Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra

"Unlock the essentials of linear algebra to build a strong foundation for machine learning. Dive into vectors, matrices, and principal component analysis with expert guidance in ""Before Machine Learning Volume 1 - Linear Algebra."" Key Features Comprehensive introduction to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Brasil, Jorge (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing, Limited 2024
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-104370742
003 DE-627-1
005 20240701091202.0
007 cr uuu---uuuuu
008 240701s2024 xx |||||o 00| ||eng c
020 |a 9781836208945  |9 978-1-83620-894-5 
020 |a 1836208944  |9 1-83620-894-4 
035 |a (DE-627-1)104370742 
035 |a (DE-599)KEP104370742 
035 |a (ORHE)9781836208952 
035 |a (DE-627-1)104370742 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23/eng/20240604 
100 1 |a Brasil, Jorge  |e VerfasserIn  |4 aut 
245 1 0 |a Before Machine Learning  |b a story on fundamental mathematics for A.I; Volume 1: Linear Algebra  |c Jorge Brasil 
246 3 3 |a Lineae Algebra 
264 1 |a Birmingham  |b Packt Publishing, Limited  |c 2024 
300 |a 1 online resource (151 p.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record 
520 |a "Unlock the essentials of linear algebra to build a strong foundation for machine learning. Dive into vectors, matrices, and principal component analysis with expert guidance in ""Before Machine Learning Volume 1 - Linear Algebra."" Key Features Comprehensive introduction to linear algebra for machine learning Detailed exploration of vectors and matrices In-depth study of principal component analysis (PCA) Book Description In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field. As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance. This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios. What you will learn Understand the fundamental concepts of vectors and matrices Implement principal component analysis in data reduction Analyze the role of linear algebra in machine learning Enhance problem-solving skills through practical applications Gain the ability to interpret and manipulate high-dimensional data Build confidence in using linear algebra for data science projects Who this book is for This course is ideal for technical professionals, data scientists, aspiring machine learning engineers, and students of computer science or related fields. Additionally, it is beneficial for software developers, engineers, and IT professionals seeking to transition into data science or machine learning roles. A basic understanding of high school-level mathematics is recommended but not required, making it accessible for those looking to build a foundational understanding before diving into more advanced topics.". 
650 0 |a Machine learning 
650 0 |a Artificial intelligence 
650 0 |a Algebras, Linear 
650 4 |a Apprentissage automatique 
650 4 |a Intelligence artificielle 
650 4 |a Algèbre linéaire 
650 4 |a artificial intelligence 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781836208952/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-104370742
_version_ 1818767367807696896
adam_text
any_adam_object
author Brasil, Jorge
author_facet Brasil, Jorge
author_role aut
author_sort Brasil, Jorge
author_variant j b jb
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)104370742
(DE-599)KEP104370742
(ORHE)9781836208952
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04118nam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-104370742</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240701091202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240701s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781836208945</subfield><subfield code="9">978-1-83620-894-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1836208944</subfield><subfield code="9">1-83620-894-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104370742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP104370742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781836208952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104370742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20240604</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brasil, Jorge</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Before Machine Learning</subfield><subfield code="b">a story on fundamental mathematics for A.I; Volume 1: Linear Algebra</subfield><subfield code="c">Jorge Brasil</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Lineae Algebra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (151 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Unlock the essentials of linear algebra to build a strong foundation for machine learning. Dive into vectors, matrices, and principal component analysis with expert guidance in ""Before Machine Learning Volume 1 - Linear Algebra."" Key Features Comprehensive introduction to linear algebra for machine learning Detailed exploration of vectors and matrices In-depth study of principal component analysis (PCA) Book Description In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field. As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance. This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios. What you will learn Understand the fundamental concepts of vectors and matrices Implement principal component analysis in data reduction Analyze the role of linear algebra in machine learning Enhance problem-solving skills through practical applications Gain the ability to interpret and manipulate high-dimensional data Build confidence in using linear algebra for data science projects Who this book is for This course is ideal for technical professionals, data scientists, aspiring machine learning engineers, and students of computer science or related fields. Additionally, it is beneficial for software developers, engineers, and IT professionals seeking to transition into data science or machine learning roles. A basic understanding of high school-level mathematics is recommended but not required, making it accessible for those looking to build a foundational understanding before diving into more advanced topics.".</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781836208952/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-104370742
illustrated Not Illustrated
indexdate 2024-12-18T08:48:46Z
institution BVB
isbn 9781836208945
1836208944
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (151 p.)
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Packt Publishing, Limited
record_format marc
spelling Brasil, Jorge VerfasserIn aut
Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra Jorge Brasil
Lineae Algebra
Birmingham Packt Publishing, Limited 2024
1 online resource (151 p.)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Description based upon print version of record
"Unlock the essentials of linear algebra to build a strong foundation for machine learning. Dive into vectors, matrices, and principal component analysis with expert guidance in ""Before Machine Learning Volume 1 - Linear Algebra."" Key Features Comprehensive introduction to linear algebra for machine learning Detailed exploration of vectors and matrices In-depth study of principal component analysis (PCA) Book Description In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field. As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance. This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios. What you will learn Understand the fundamental concepts of vectors and matrices Implement principal component analysis in data reduction Analyze the role of linear algebra in machine learning Enhance problem-solving skills through practical applications Gain the ability to interpret and manipulate high-dimensional data Build confidence in using linear algebra for data science projects Who this book is for This course is ideal for technical professionals, data scientists, aspiring machine learning engineers, and students of computer science or related fields. Additionally, it is beneficial for software developers, engineers, and IT professionals seeking to transition into data science or machine learning roles. A basic understanding of high school-level mathematics is recommended but not required, making it accessible for those looking to build a foundational understanding before diving into more advanced topics.".
Machine learning
Artificial intelligence
Algebras, Linear
Apprentissage automatique
Intelligence artificielle
Algèbre linéaire
artificial intelligence
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781836208952/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Brasil, Jorge
Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra
Machine learning
Artificial intelligence
Algebras, Linear
Apprentissage automatique
Intelligence artificielle
Algèbre linéaire
artificial intelligence
title Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra
title_alt Lineae Algebra
title_auth Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra
title_exact_search Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra
title_full Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra Jorge Brasil
title_fullStr Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra Jorge Brasil
title_full_unstemmed Before Machine Learning a story on fundamental mathematics for A.I; Volume 1: Linear Algebra Jorge Brasil
title_short Before Machine Learning
title_sort before machine learning a story on fundamental mathematics for a i volume 1 linear algebra
title_sub a story on fundamental mathematics for A.I; Volume 1: Linear Algebra
topic Machine learning
Artificial intelligence
Algebras, Linear
Apprentissage automatique
Intelligence artificielle
Algèbre linéaire
artificial intelligence
topic_facet Machine learning
Artificial intelligence
Algebras, Linear
Apprentissage automatique
Intelligence artificielle
Algèbre linéaire
artificial intelligence
url https://learning.oreilly.com/library/view/-/9781836208952/?ar
work_keys_str_mv AT brasiljorge beforemachinelearningastoryonfundamentalmathematicsforaivolume1linearalgebra
AT brasiljorge lineaealgebra