Tactile sensing, skill learning and robotic dexterous manipulation

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Li, Qiang (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London Academic Press 2022
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-104366656
003 DE-627-1
005 20240701091156.0
007 cr uuu---uuuuu
008 240701s2022 xx |||||o 00| ||eng c
020 |a 9780323904179  |c electronic bk.  |9 978-0-323-90417-9 
020 |a 0323904173  |c electronic bk.  |9 0-323-90417-3 
035 |a (DE-627-1)104366656 
035 |a (DE-599)KEP104366656 
035 |a (ORHE)9780323904179 
035 |a (DE-627-1)104366656 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 629.8/933  |2 23 
245 1 0 |a Tactile sensing, skill learning and robotic dexterous manipulation  |c edited by Qiang Li [and more] 
264 1 |a London  |b Academic Press  |c 2022 
300 |a 1 online resource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches. 
650 0 |a Robot hands 
650 0 |a Robotics 
650 0 |a Tactile sensors 
650 2 |a Robotics 
650 4 |a Préhenseurs 
650 4 |a Robotique 
650 4 |a Capteurs tactiles 
650 4 |a Robot hands 
650 4 |a Robotics 
650 4 |a Tactile sensors 
700 1 |a Li, Qiang  |e MitwirkendeR  |4 ctb 
776 1 |z 0323904459 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 0323904459 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9780323904179/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-104366656
_version_ 1818767368800698368
adam_text
any_adam_object
author2 Li, Qiang
author2_role ctb
author2_variant q l ql
author_facet Li, Qiang
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)104366656
(DE-599)KEP104366656
(ORHE)9780323904179
dewey-full 629.8/933
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 629 - Other branches of engineering
dewey-raw 629.8/933
dewey-search 629.8/933
dewey-sort 3629.8 3933
dewey-tens 620 - Engineering and allied operations
discipline Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03053nam a22004692 4500</leader><controlfield tag="001">ZDB-30-ORH-104366656</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240701091156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240701s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323904179</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-323-90417-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0323904173</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-323-90417-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104366656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP104366656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780323904179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)104366656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/933</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tactile sensing, skill learning and robotic dexterous manipulation</subfield><subfield code="c">edited by Qiang Li [and more]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Robot hands</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Tactile sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Préhenseurs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capteurs tactiles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot hands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tactile sensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qiang</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">0323904459</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0323904459</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780323904179/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-104366656
illustrated Not Illustrated
indexdate 2024-12-18T08:48:47Z
institution BVB
isbn 9780323904179
0323904173
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Academic Press
record_format marc
spelling Tactile sensing, skill learning and robotic dexterous manipulation edited by Qiang Li [and more]
London Academic Press 2022
1 online resource
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches.
Robot hands
Robotics
Tactile sensors
Préhenseurs
Robotique
Capteurs tactiles
Li, Qiang MitwirkendeR ctb
0323904459
Erscheint auch als Druck-Ausgabe 0323904459
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780323904179/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Tactile sensing, skill learning and robotic dexterous manipulation
Robot hands
Robotics
Tactile sensors
Préhenseurs
Robotique
Capteurs tactiles
title Tactile sensing, skill learning and robotic dexterous manipulation
title_auth Tactile sensing, skill learning and robotic dexterous manipulation
title_exact_search Tactile sensing, skill learning and robotic dexterous manipulation
title_full Tactile sensing, skill learning and robotic dexterous manipulation edited by Qiang Li [and more]
title_fullStr Tactile sensing, skill learning and robotic dexterous manipulation edited by Qiang Li [and more]
title_full_unstemmed Tactile sensing, skill learning and robotic dexterous manipulation edited by Qiang Li [and more]
title_short Tactile sensing, skill learning and robotic dexterous manipulation
title_sort tactile sensing skill learning and robotic dexterous manipulation
topic Robot hands
Robotics
Tactile sensors
Préhenseurs
Robotique
Capteurs tactiles
topic_facet Robot hands
Robotics
Tactile sensors
Préhenseurs
Robotique
Capteurs tactiles
url https://learning.oreilly.com/library/view/-/9780323904179/?ar
work_keys_str_mv AT liqiang tactilesensingskilllearningandroboticdexterousmanipulation