Graph Learning and Network Science for Natural Language Processing

Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Garg, Muskan (HerausgeberIn), Gupta, Amit Kumar (HerausgeberIn), Prasad, Rajesh (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton, FL CRC Press 2023
Schriftenreihe:Computational intelligence techniques
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models. Features: Presents a comprehensive study of the interdisciplinary graphical approach to NLP Covers recent computational intelligence techniques for graph-based neural network models Discusses advances in random walk-based techniques, semantic webs, and lexical networks Explores recent research into NLP for graph-based streaming data Reviews advances in knowledge graph embedding and ontologies for NLP approaches This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.
Beschreibung:Description based on online resource; title from digital title page (viewed on February 08, 2023)
Beschreibung:1 online resource.
ISBN:9781000789300
1000789306
9781003272649
1003272649
1000789500
9781000789508