Computational fractional dynamical systems fractional differential equations and applications

"The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It deals with differential and integral operators with non-integral powers. The fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chakraverty, Snehashish (VerfasserIn), Jena, Rajarama Mohan (VerfasserIn), Jena, Subrat Kumar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ John Wiley & Sons, Inc. 2023
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-102560242
003 DE-627-1
005 20240429114541.0
007 cr uuu---uuuuu
008 240429s2023 xx |||||o 00| ||eng c
020 |a 1119696992  |c electronic book  |9 1-119-69699-2 
020 |a 9781119696834  |c electronic book  |9 978-1-119-69683-4 
020 |a 1119696836  |c electronic book  |9 1-119-69683-6 
020 |a 9781119697060  |c electronic book  |9 978-1-119-69706-0 
020 |a 1119697069  |c electronic book  |9 1-119-69706-9 
020 |a 9781119696995  |c electronic bk.  |9 978-1-119-69699-5 
020 |a 9781119696957  |9 978-1-119-69695-7 
035 |a (DE-627-1)102560242 
035 |a (DE-599)KEP102560242 
035 |a (ORHE)9781119696957 
035 |a (DE-627-1)102560242 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 515/.35  |2 23/eng20220826 
100 1 |a Chakraverty, Snehashish  |e VerfasserIn  |4 aut 
245 1 0 |a Computational fractional dynamical systems  |b fractional differential equations and applications  |c Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena 
264 1 |a Hoboken, NJ  |b John Wiley & Sons, Inc.  |c 2023 
264 4 |c ©2023 
300 |a 1 online resource (xvi, 249 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on October 27, 2022) 
520 |a "The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It deals with differential and integral operators with non-integral powers. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, controller for dynamical systems, etc. Also, the mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. It is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear partial differential equations of fractional order. Therefore, for the last few decades, a great deal of attention has been directed towards the solution of these kinds of problems. Researchers are trying to develop various efficient methods to handle these problems. A few methods have been developed by other researchers to analyze the above problems, but those are sometimes problem-dependent and are not efficient. Therefore, the development of appropriate computational efficient methods and their use in solving the mentioned problems is the current challenge. While some books are dedicated to providing particular computational methods for solving these kinds of models, the content of these books are limited and do not cover all the aspect of computationally efficient methods regarding fractional-order systems. In this regard, this book is an attempt to rigorously present a variety of computationally efficient methods (around 25) in one place. Various semi-analytical and expansion methods with respect to the main title of the book are addressed to solve different types of fractional models. Here, the author's aim is to include different numerical methods with detailed steps to handle basic and advanced equations arising in science and engineering."-- 
650 0 |a Fractional differential equations 
650 4 |a Équations différentielles fractionnaires 
650 4 |a Fractional differential equations 
700 1 |a Jena, Rajarama Mohan  |e VerfasserIn  |4 aut 
700 1 |a Jena, Subrat Kumar  |e VerfasserIn  |4 aut 
776 1 |z 9781119696957 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781119696957 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781119696957/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-102560242
_version_ 1818767371232346112
adam_text
any_adam_object
author Chakraverty, Snehashish
Jena, Rajarama Mohan
Jena, Subrat Kumar
author_facet Chakraverty, Snehashish
Jena, Rajarama Mohan
Jena, Subrat Kumar
author_role aut
aut
aut
author_sort Chakraverty, Snehashish
author_variant s c sc
r m j rm rmj
s k j sk skj
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)102560242
(DE-599)KEP102560242
(ORHE)9781119696957
dewey-full 515/.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.35
dewey-search 515/.35
dewey-sort 3515 235
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04197nam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-102560242</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240429114541.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240429s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119696992</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-69699-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119696834</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-69683-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119696836</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-69683-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119697060</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-69706-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119697069</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-69706-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119696995</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-69699-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119696957</subfield><subfield code="9">978-1-119-69695-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102560242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102560242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119696957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102560242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">23/eng20220826</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chakraverty, Snehashish</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational fractional dynamical systems</subfield><subfield code="b">fractional differential equations and applications</subfield><subfield code="c">Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley &amp; Sons, Inc.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 249 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on October 27, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It deals with differential and integral operators with non-integral powers. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, controller for dynamical systems, etc. Also, the mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. It is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear partial differential equations of fractional order. Therefore, for the last few decades, a great deal of attention has been directed towards the solution of these kinds of problems. Researchers are trying to develop various efficient methods to handle these problems. A few methods have been developed by other researchers to analyze the above problems, but those are sometimes problem-dependent and are not efficient. Therefore, the development of appropriate computational efficient methods and their use in solving the mentioned problems is the current challenge. While some books are dedicated to providing particular computational methods for solving these kinds of models, the content of these books are limited and do not cover all the aspect of computationally efficient methods regarding fractional-order systems. In this regard, this book is an attempt to rigorously present a variety of computationally efficient methods (around 25) in one place. Various semi-analytical and expansion methods with respect to the main title of the book are addressed to solve different types of fractional models. Here, the author's aim is to include different numerical methods with detailed steps to handle basic and advanced equations arising in science and engineering."--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fractional differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles fractionnaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional differential equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jena, Rajarama Mohan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jena, Subrat Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781119696957</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119696957</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119696957/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-102560242
illustrated Illustrated
indexdate 2024-12-18T08:48:49Z
institution BVB
isbn 1119696992
9781119696834
1119696836
9781119697060
1119697069
9781119696995
9781119696957
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (xvi, 249 pages) illustrations
psigel ZDB-30-ORH
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher John Wiley & Sons, Inc.
record_format marc
spelling Chakraverty, Snehashish VerfasserIn aut
Computational fractional dynamical systems fractional differential equations and applications Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena
Hoboken, NJ John Wiley & Sons, Inc. 2023
©2023
1 online resource (xvi, 249 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on October 27, 2022)
"The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It deals with differential and integral operators with non-integral powers. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, controller for dynamical systems, etc. Also, the mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. It is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear partial differential equations of fractional order. Therefore, for the last few decades, a great deal of attention has been directed towards the solution of these kinds of problems. Researchers are trying to develop various efficient methods to handle these problems. A few methods have been developed by other researchers to analyze the above problems, but those are sometimes problem-dependent and are not efficient. Therefore, the development of appropriate computational efficient methods and their use in solving the mentioned problems is the current challenge. While some books are dedicated to providing particular computational methods for solving these kinds of models, the content of these books are limited and do not cover all the aspect of computationally efficient methods regarding fractional-order systems. In this regard, this book is an attempt to rigorously present a variety of computationally efficient methods (around 25) in one place. Various semi-analytical and expansion methods with respect to the main title of the book are addressed to solve different types of fractional models. Here, the author's aim is to include different numerical methods with detailed steps to handle basic and advanced equations arising in science and engineering."--
Fractional differential equations
Équations différentielles fractionnaires
Jena, Rajarama Mohan VerfasserIn aut
Jena, Subrat Kumar VerfasserIn aut
9781119696957
Erscheint auch als Druck-Ausgabe 9781119696957
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781119696957/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Chakraverty, Snehashish
Jena, Rajarama Mohan
Jena, Subrat Kumar
Computational fractional dynamical systems fractional differential equations and applications
Fractional differential equations
Équations différentielles fractionnaires
title Computational fractional dynamical systems fractional differential equations and applications
title_auth Computational fractional dynamical systems fractional differential equations and applications
title_exact_search Computational fractional dynamical systems fractional differential equations and applications
title_full Computational fractional dynamical systems fractional differential equations and applications Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena
title_fullStr Computational fractional dynamical systems fractional differential equations and applications Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena
title_full_unstemmed Computational fractional dynamical systems fractional differential equations and applications Snehashish Chakraverty, Rajarama Mohan Jena, Subrat Kumar Jena
title_short Computational fractional dynamical systems
title_sort computational fractional dynamical systems fractional differential equations and applications
title_sub fractional differential equations and applications
topic Fractional differential equations
Équations différentielles fractionnaires
topic_facet Fractional differential equations
Équations différentielles fractionnaires
url https://learning.oreilly.com/library/view/-/9781119696957/?ar
work_keys_str_mv AT chakravertysnehashish computationalfractionaldynamicalsystemsfractionaldifferentialequationsandapplications
AT jenarajaramamohan computationalfractionaldynamicalsystemsfractionaldifferentialequationsandapplications
AT jenasubratkumar computationalfractionaldynamicalsystemsfractionaldifferentialequationsandapplications