What leaders should know about measuring AI project value
Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Cambridge, Massachusetts]
MIT Sloan Management Review
2024
|
Ausgabe: | [First edition]. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-102207429 | ||
003 | DE-627-1 | ||
005 | 20240404083423.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240404s2024 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)102207429 | ||
035 | |a (DE-599)KEP102207429 | ||
035 | |a (ORHE)53863MIT65334 | ||
035 | |a (DE-627-1)102207429 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 658/.0563 |2 23/eng/20240319 | |
100 | 1 | |a Siegel, Eric |d 1968- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a What leaders should know about measuring AI project value |c Eric Siegel |
250 | |a [First edition]. | ||
264 | 1 | |a [Cambridge, Massachusetts] |b MIT Sloan Management Review |c 2024 | |
300 | |a 1 online resource (8 pages) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Reprint #65334 | ||
520 | |a Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver. | ||
650 | 0 | |a Artificial intelligence |x Industrial applications | |
650 | 0 | |a Business |x Data processing | |
650 | 0 | |a Machine learning | |
650 | 4 | |a Intelligence artificielle ; Applications industrielles | |
650 | 4 | |a Gestion ; Informatique | |
650 | 4 | |a Apprentissage automatique | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/53863MIT65334/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-102207429 |
---|---|
_version_ | 1818767371590959104 |
adam_text | |
any_adam_object | |
author | Siegel, Eric 1968- |
author_facet | Siegel, Eric 1968- |
author_role | aut |
author_sort | Siegel, Eric 1968- |
author_variant | e s es |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)102207429 (DE-599)KEP102207429 (ORHE)53863MIT65334 |
dewey-full | 658/.0563 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658/.0563 |
dewey-search | 658/.0563 |
dewey-sort | 3658 3563 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
edition | [First edition]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01791nam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-102207429</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240404083423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240404s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102207429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102207429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102207429</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658/.0563</subfield><subfield code="2">23/eng/20240319</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Siegel, Eric</subfield><subfield code="d">1968-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What leaders should know about measuring AI project value</subfield><subfield code="c">Eric Siegel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (8 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65334</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gestion ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65334/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-102207429 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:49Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (8 pages) |
psigel | ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | MIT Sloan Management Review |
record_format | marc |
spelling | Siegel, Eric 1968- VerfasserIn aut What leaders should know about measuring AI project value Eric Siegel [First edition]. [Cambridge, Massachusetts] MIT Sloan Management Review 2024 1 online resource (8 pages) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reprint #65334 Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver. Artificial intelligence Industrial applications Business Data processing Machine learning Intelligence artificielle ; Applications industrielles Gestion ; Informatique Apprentissage automatique TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/53863MIT65334/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Siegel, Eric 1968- What leaders should know about measuring AI project value Artificial intelligence Industrial applications Business Data processing Machine learning Intelligence artificielle ; Applications industrielles Gestion ; Informatique Apprentissage automatique |
title | What leaders should know about measuring AI project value |
title_auth | What leaders should know about measuring AI project value |
title_exact_search | What leaders should know about measuring AI project value |
title_full | What leaders should know about measuring AI project value Eric Siegel |
title_fullStr | What leaders should know about measuring AI project value Eric Siegel |
title_full_unstemmed | What leaders should know about measuring AI project value Eric Siegel |
title_short | What leaders should know about measuring AI project value |
title_sort | what leaders should know about measuring ai project value |
topic | Artificial intelligence Industrial applications Business Data processing Machine learning Intelligence artificielle ; Applications industrielles Gestion ; Informatique Apprentissage automatique |
topic_facet | Artificial intelligence Industrial applications Business Data processing Machine learning Intelligence artificielle ; Applications industrielles Gestion ; Informatique Apprentissage automatique |
url | https://learning.oreilly.com/library/view/-/53863MIT65334/?ar |
work_keys_str_mv | AT siegeleric whatleadersshouldknowaboutmeasuringaiprojectvalue |