What leaders should know about measuring AI project value

Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Siegel, Eric 1968- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Cambridge, Massachusetts] MIT Sloan Management Review 2024
Ausgabe:[First edition].
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-102207429
003 DE-627-1
005 20240404083423.0
007 cr uuu---uuuuu
008 240404s2024 xx |||||o 00| ||eng c
035 |a (DE-627-1)102207429 
035 |a (DE-599)KEP102207429 
035 |a (ORHE)53863MIT65334 
035 |a (DE-627-1)102207429 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 658/.0563  |2 23/eng/20240319 
100 1 |a Siegel, Eric  |d 1968-  |e VerfasserIn  |4 aut 
245 1 0 |a What leaders should know about measuring AI project value  |c Eric Siegel 
250 |a [First edition]. 
264 1 |a [Cambridge, Massachusetts]  |b MIT Sloan Management Review  |c 2024 
300 |a 1 online resource (8 pages) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Reprint #65334 
520 |a Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver. 
650 0 |a Artificial intelligence  |x Industrial applications 
650 0 |a Business  |x Data processing 
650 0 |a Machine learning 
650 4 |a Intelligence artificielle ; Applications industrielles 
650 4 |a Gestion ; Informatique 
650 4 |a Apprentissage automatique 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/53863MIT65334/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-102207429
_version_ 1818767371590959104
adam_text
any_adam_object
author Siegel, Eric 1968-
author_facet Siegel, Eric 1968-
author_role aut
author_sort Siegel, Eric 1968-
author_variant e s es
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)102207429
(DE-599)KEP102207429
(ORHE)53863MIT65334
dewey-full 658/.0563
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 658 - General management
dewey-raw 658/.0563
dewey-search 658/.0563
dewey-sort 3658 3563
dewey-tens 650 - Management and auxiliary services
discipline Wirtschaftswissenschaften
edition [First edition].
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01791nam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-102207429</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240404083423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240404s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102207429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102207429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102207429</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658/.0563</subfield><subfield code="2">23/eng/20240319</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Siegel, Eric</subfield><subfield code="d">1968-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What leaders should know about measuring AI project value</subfield><subfield code="c">Eric Siegel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (8 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65334</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gestion ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65334/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-102207429
illustrated Not Illustrated
indexdate 2024-12-18T08:48:49Z
institution BVB
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (8 pages)
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher MIT Sloan Management Review
record_format marc
spelling Siegel, Eric 1968- VerfasserIn aut
What leaders should know about measuring AI project value Eric Siegel
[First edition].
[Cambridge, Massachusetts] MIT Sloan Management Review 2024
1 online resource (8 pages)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Reprint #65334
Should you deploy that machine learning model - or will it fail? Most leaders making these decisions are focusing on the wrong metrics - which dooms many projects. In this article, adapted from the book The AI Playbook: Mastering the Rare Art of Machine Learning Deployment, learn how and why to use business metrics rather than technical ones to evaluate how well an ML model will perform - and how much business value it will deliver.
Artificial intelligence Industrial applications
Business Data processing
Machine learning
Intelligence artificielle ; Applications industrielles
Gestion ; Informatique
Apprentissage automatique
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/53863MIT65334/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Siegel, Eric 1968-
What leaders should know about measuring AI project value
Artificial intelligence Industrial applications
Business Data processing
Machine learning
Intelligence artificielle ; Applications industrielles
Gestion ; Informatique
Apprentissage automatique
title What leaders should know about measuring AI project value
title_auth What leaders should know about measuring AI project value
title_exact_search What leaders should know about measuring AI project value
title_full What leaders should know about measuring AI project value Eric Siegel
title_fullStr What leaders should know about measuring AI project value Eric Siegel
title_full_unstemmed What leaders should know about measuring AI project value Eric Siegel
title_short What leaders should know about measuring AI project value
title_sort what leaders should know about measuring ai project value
topic Artificial intelligence Industrial applications
Business Data processing
Machine learning
Intelligence artificielle ; Applications industrielles
Gestion ; Informatique
Apprentissage automatique
topic_facet Artificial intelligence Industrial applications
Business Data processing
Machine learning
Intelligence artificielle ; Applications industrielles
Gestion ; Informatique
Apprentissage automatique
url https://learning.oreilly.com/library/view/-/53863MIT65334/?ar
work_keys_str_mv AT siegeleric whatleadersshouldknowaboutmeasuringaiprojectvalue