DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data

Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using Python Key Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Christensen, Jonas (VerfasserIn), Bajaj, Nakul (VerfasserIn), Gosada, Manmohan (VerfasserIn)
Weitere Verfasser: Borne, Kirk D. (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham, UK Packt Publishing Ltd. 2024
Ausgabe:1st edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-102205922
003 DE-627-1
005 20240404083421.0
007 cr uuu---uuuuu
008 240404s2024 xx |||||o 00| ||eng c
020 |a 9781804612415  |c electronic bk.  |9 978-1-80461-241-5 
020 |a 1804612413  |c electronic bk.  |9 1-80461-241-3 
020 |a 9781804618127  |9 978-1-80461-812-7 
035 |a (DE-627-1)102205922 
035 |a (DE-599)KEP102205922 
035 |a (ORHE)9781804618127 
035 |a (DE-627-1)102205922 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 005.13/3  |2 23/eng/20240305 
100 1 |a Christensen, Jonas  |e VerfasserIn  |4 aut 
245 1 0 |a DATA-CENTRIC MACHINE LEARNING WITH PYTHON  |b the ultimate guide to engineering and deploying high-quality models based on good data  |c Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne 
250 |a 1st edition. 
264 1 |a Birmingham, UK  |b Packt Publishing Ltd.  |c 2024 
300 |a 1 online resource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using Python Key Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synthetic data creation using Python Develop essential skills for building reliable, responsible, and ethical machine learning solutions Purchase of the print or Kindle book includes a free PDF eBook Book Description In the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets. This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of 'small data'. Delving into the building blocks of data-centric ML/AI, you'll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you'll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you'll get a roadmap for implementing data-centric ML/AI in diverse applications in Python. By the end of this book, you'll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability. What you will learn Understand the impact of input data quality compared to model selection and tuning Recognize the crucial role of subject-matter experts in effective model development Implement data cleaning, labeling, and augmentation best practices Explore common synthetic data generation techniques and their applications Apply synthetic data generation techniques using common Python packages Detect and mitigate bias in a dataset using best-practice techniques Understand the importance of reliability, responsibility, and ethical considerations in ML/AI Who this book is for This book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations. 
650 0 |a Machine learning 
650 0 |a Python (Computer program language) 
650 0 |a Data mining 
650 4 |a Apprentissage automatique 
650 4 |a Python (Langage de programmation) 
650 4 |a Exploration de données (Informatique) 
700 1 |a Bajaj, Nakul  |e VerfasserIn  |4 aut 
700 1 |a Gosada, Manmohan  |e VerfasserIn  |4 aut 
700 1 |a Borne, Kirk D.  |e MitwirkendeR  |4 ctb 
776 1 |z 1804618128 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 1804618128 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781804618127/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-102205922
_version_ 1818767371983126528
adam_text
any_adam_object
author Christensen, Jonas
Bajaj, Nakul
Gosada, Manmohan
author2 Borne, Kirk D.
author2_role ctb
author2_variant k d b kd kdb
author_facet Christensen, Jonas
Bajaj, Nakul
Gosada, Manmohan
Borne, Kirk D.
author_role aut
aut
aut
author_sort Christensen, Jonas
author_variant j c jc
n b nb
m g mg
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)102205922
(DE-599)KEP102205922
(ORHE)9781804618127
dewey-full 005.13/3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.13/3
dewey-search 005.13/3
dewey-sort 15.13 13
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition 1st edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04687nam a22004812 4500</leader><controlfield tag="001">ZDB-30-ORH-102205922</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240404083421.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240404s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804612415</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-80461-241-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1804612413</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-80461-241-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804618127</subfield><subfield code="9">978-1-80461-812-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102205922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781804618127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205922</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23/eng/20240305</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Christensen, Jonas</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DATA-CENTRIC MACHINE LEARNING WITH PYTHON</subfield><subfield code="b">the ultimate guide to engineering and deploying high-quality models based on good data</subfield><subfield code="c">Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using Python Key Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synthetic data creation using Python Develop essential skills for building reliable, responsible, and ethical machine learning solutions Purchase of the print or Kindle book includes a free PDF eBook Book Description In the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets. This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of 'small data'. Delving into the building blocks of data-centric ML/AI, you'll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you'll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you'll get a roadmap for implementing data-centric ML/AI in diverse applications in Python. By the end of this book, you'll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability. What you will learn Understand the impact of input data quality compared to model selection and tuning Recognize the crucial role of subject-matter experts in effective model development Implement data cleaning, labeling, and augmentation best practices Explore common synthetic data generation techniques and their applications Apply synthetic data generation techniques using common Python packages Detect and mitigate bias in a dataset using best-practice techniques Understand the importance of reliability, responsibility, and ethical considerations in ML/AI Who this book is for This book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bajaj, Nakul</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gosada, Manmohan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borne, Kirk D.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1804618128</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1804618128</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781804618127/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-102205922
illustrated Not Illustrated
indexdate 2024-12-18T08:48:50Z
institution BVB
isbn 9781804612415
1804612413
9781804618127
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Packt Publishing Ltd.
record_format marc
spelling Christensen, Jonas VerfasserIn aut
DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne
1st edition.
Birmingham, UK Packt Publishing Ltd. 2024
1 online resource
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using Python Key Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synthetic data creation using Python Develop essential skills for building reliable, responsible, and ethical machine learning solutions Purchase of the print or Kindle book includes a free PDF eBook Book Description In the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets. This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of 'small data'. Delving into the building blocks of data-centric ML/AI, you'll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you'll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you'll get a roadmap for implementing data-centric ML/AI in diverse applications in Python. By the end of this book, you'll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability. What you will learn Understand the impact of input data quality compared to model selection and tuning Recognize the crucial role of subject-matter experts in effective model development Implement data cleaning, labeling, and augmentation best practices Explore common synthetic data generation techniques and their applications Apply synthetic data generation techniques using common Python packages Detect and mitigate bias in a dataset using best-practice techniques Understand the importance of reliability, responsibility, and ethical considerations in ML/AI Who this book is for This book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations.
Machine learning
Python (Computer program language)
Data mining
Apprentissage automatique
Python (Langage de programmation)
Exploration de données (Informatique)
Bajaj, Nakul VerfasserIn aut
Gosada, Manmohan VerfasserIn aut
Borne, Kirk D. MitwirkendeR ctb
1804618128
Erscheint auch als Druck-Ausgabe 1804618128
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781804618127/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Christensen, Jonas
Bajaj, Nakul
Gosada, Manmohan
DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data
Machine learning
Python (Computer program language)
Data mining
Apprentissage automatique
Python (Langage de programmation)
Exploration de données (Informatique)
title DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data
title_auth DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data
title_exact_search DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data
title_full DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne
title_fullStr DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne
title_full_unstemmed DATA-CENTRIC MACHINE LEARNING WITH PYTHON the ultimate guide to engineering and deploying high-quality models based on good data Jonas Christensen, Nakul Bajaj, Manmohan Gosada ; foreword by Kirk D. Borne
title_short DATA-CENTRIC MACHINE LEARNING WITH PYTHON
title_sort data centric machine learning with python the ultimate guide to engineering and deploying high quality models based on good data
title_sub the ultimate guide to engineering and deploying high-quality models based on good data
topic Machine learning
Python (Computer program language)
Data mining
Apprentissage automatique
Python (Langage de programmation)
Exploration de données (Informatique)
topic_facet Machine learning
Python (Computer program language)
Data mining
Apprentissage automatique
Python (Langage de programmation)
Exploration de données (Informatique)
url https://learning.oreilly.com/library/view/-/9781804618127/?ar
work_keys_str_mv AT christensenjonas datacentricmachinelearningwithpythontheultimateguidetoengineeringanddeployinghighqualitymodelsbasedongooddata
AT bajajnakul datacentricmachinelearningwithpythontheultimateguidetoengineeringanddeployinghighqualitymodelsbasedongooddata
AT gosadamanmohan datacentricmachinelearningwithpythontheultimateguidetoengineeringanddeployinghighqualitymodelsbasedongooddata
AT bornekirkd datacentricmachinelearningwithpythontheultimateguidetoengineeringanddeployinghighqualitymodelsbasedongooddata