Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand

Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nair, Devadrita (VerfasserIn), Saenz, Maria Jesus (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Cambridge, Massachusetts] MIT Sloan Management Review 2024
Ausgabe:[First edition].
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002 4500
001 ZDB-30-ORH-102205701
003 DE-627-1
005 20240404083421.0
007 cr uuu---uuuuu
008 240404s2024 xx |||||o 00| ||eng c
035 |a (DE-627-1)102205701 
035 |a (DE-599)KEP102205701 
035 |a (ORHE)53863MIT65315 
035 |a (DE-627-1)102205701 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3  |2 23/eng/20240227 
100 1 |a Nair, Devadrita  |e VerfasserIn  |4 aut 
245 1 0 |a Pair people and AI for better product demand forecasting  |b a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand  |c Devadrita Nair, Maria Jesus Saenz 
250 |a [First edition]. 
264 1 |a [Cambridge, Massachusetts]  |b MIT Sloan Management Review  |c 2024 
300 |a 1 online resource (7 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Reprint #65315. - Includes bibliographical references 
520 |a Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert. 
650 0 |a Artificial intelligence  |x Industrial applications 
650 0 |a Retail trade 
650 0 |a Marketing 
650 4 |a Intelligence artificielle ; Applications industrielles 
650 4 |a Commerce de détail 
650 4 |a Marketing 
650 4 |a marketing 
700 1 |a Saenz, Maria Jesus  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/53863MIT65315/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-102205701
_version_ 1818767372533628928
adam_text
any_adam_object
author Nair, Devadrita
Saenz, Maria Jesus
author_facet Nair, Devadrita
Saenz, Maria Jesus
author_role aut
aut
author_sort Nair, Devadrita
author_variant d n dn
m j s mj mjs
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)102205701
(DE-599)KEP102205701
(ORHE)53863MIT65315
dewey-full 006.3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3
dewey-search 006.3
dewey-sort 16.3
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition [First edition].
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01898nam a22004212 4500</leader><controlfield tag="001">ZDB-30-ORH-102205701</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240404083421.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240404s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102205701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65315</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20240227</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nair, Devadrita</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pair people and AI for better product demand forecasting</subfield><subfield code="b">a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand</subfield><subfield code="c">Devadrita Nair, Maria Jesus Saenz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (7 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65315. - Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Retail trade</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Marketing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commerce de détail</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marketing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saenz, Maria Jesus</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65315/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-102205701
illustrated Illustrated
indexdate 2024-12-18T08:48:50Z
institution BVB
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (7 pages) illustrations
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher MIT Sloan Management Review
record_format marc
spelling Nair, Devadrita VerfasserIn aut
Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz
[First edition].
[Cambridge, Massachusetts] MIT Sloan Management Review 2024
1 online resource (7 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Reprint #65315. - Includes bibliographical references
Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert.
Artificial intelligence Industrial applications
Retail trade
Marketing
Intelligence artificielle ; Applications industrielles
Commerce de détail
marketing
Saenz, Maria Jesus VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/53863MIT65315/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Nair, Devadrita
Saenz, Maria Jesus
Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
Artificial intelligence Industrial applications
Retail trade
Marketing
Intelligence artificielle ; Applications industrielles
Commerce de détail
marketing
title Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
title_auth Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
title_exact_search Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
title_full Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz
title_fullStr Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz
title_full_unstemmed Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz
title_short Pair people and AI for better product demand forecasting
title_sort pair people and ai for better product demand forecasting a new framework helps leaders orchestrate human and ai agents to accurately forecast product demand
title_sub a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
topic Artificial intelligence Industrial applications
Retail trade
Marketing
Intelligence artificielle ; Applications industrielles
Commerce de détail
marketing
topic_facet Artificial intelligence Industrial applications
Retail trade
Marketing
Intelligence artificielle ; Applications industrielles
Commerce de détail
marketing
url https://learning.oreilly.com/library/view/-/53863MIT65315/?ar
work_keys_str_mv AT nairdevadrita pairpeopleandaiforbetterproductdemandforecastinganewframeworkhelpsleadersorchestratehumanandaiagentstoaccuratelyforecastproductdemand
AT saenzmariajesus pairpeopleandaiforbetterproductdemandforecastinganewframeworkhelpsleadersorchestratehumanandaiagentstoaccuratelyforecastproductdemand