Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand
Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Cambridge, Massachusetts]
MIT Sloan Management Review
2024
|
Ausgabe: | [First edition]. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-102205701 | ||
003 | DE-627-1 | ||
005 | 20240404083421.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240404s2024 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)102205701 | ||
035 | |a (DE-599)KEP102205701 | ||
035 | |a (ORHE)53863MIT65315 | ||
035 | |a (DE-627-1)102205701 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3 |2 23/eng/20240227 | |
100 | 1 | |a Nair, Devadrita |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Pair people and AI for better product demand forecasting |b a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand |c Devadrita Nair, Maria Jesus Saenz |
250 | |a [First edition]. | ||
264 | 1 | |a [Cambridge, Massachusetts] |b MIT Sloan Management Review |c 2024 | |
300 | |a 1 online resource (7 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Reprint #65315. - Includes bibliographical references | ||
520 | |a Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert. | ||
650 | 0 | |a Artificial intelligence |x Industrial applications | |
650 | 0 | |a Retail trade | |
650 | 0 | |a Marketing | |
650 | 4 | |a Intelligence artificielle ; Applications industrielles | |
650 | 4 | |a Commerce de détail | |
650 | 4 | |a Marketing | |
650 | 4 | |a marketing | |
700 | 1 | |a Saenz, Maria Jesus |e VerfasserIn |4 aut | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/53863MIT65315/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-102205701 |
---|---|
_version_ | 1818767372533628928 |
adam_text | |
any_adam_object | |
author | Nair, Devadrita Saenz, Maria Jesus |
author_facet | Nair, Devadrita Saenz, Maria Jesus |
author_role | aut aut |
author_sort | Nair, Devadrita |
author_variant | d n dn m j s mj mjs |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)102205701 (DE-599)KEP102205701 (ORHE)53863MIT65315 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01898nam a22004212 4500</leader><controlfield tag="001">ZDB-30-ORH-102205701</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240404083421.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240404s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102205701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65315</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102205701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20240227</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nair, Devadrita</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pair people and AI for better product demand forecasting</subfield><subfield code="b">a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand</subfield><subfield code="c">Devadrita Nair, Maria Jesus Saenz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (7 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65315. - Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Retail trade</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Marketing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commerce de détail</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marketing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saenz, Maria Jesus</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65315/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-102205701 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:48:50Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (7 pages) illustrations |
psigel | ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | MIT Sloan Management Review |
record_format | marc |
spelling | Nair, Devadrita VerfasserIn aut Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz [First edition]. [Cambridge, Massachusetts] MIT Sloan Management Review 2024 1 online resource (7 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reprint #65315. - Includes bibliographical references Today's fad-driven retail environment is volatile, making it challenging for companies to accurately predict product demand. The authors provide a framework that considers both product life cycle and demand volatility that can help organizations fine-tune their product demand forecasting, with human and AI agents working in concert. Artificial intelligence Industrial applications Retail trade Marketing Intelligence artificielle ; Applications industrielles Commerce de détail marketing Saenz, Maria Jesus VerfasserIn aut TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/53863MIT65315/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Nair, Devadrita Saenz, Maria Jesus Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Artificial intelligence Industrial applications Retail trade Marketing Intelligence artificielle ; Applications industrielles Commerce de détail marketing |
title | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand |
title_auth | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand |
title_exact_search | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand |
title_full | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz |
title_fullStr | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz |
title_full_unstemmed | Pair people and AI for better product demand forecasting a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand Devadrita Nair, Maria Jesus Saenz |
title_short | Pair people and AI for better product demand forecasting |
title_sort | pair people and ai for better product demand forecasting a new framework helps leaders orchestrate human and ai agents to accurately forecast product demand |
title_sub | a new framework helps leaders orchestrate human and AI agents to accurately forecast product demand |
topic | Artificial intelligence Industrial applications Retail trade Marketing Intelligence artificielle ; Applications industrielles Commerce de détail marketing |
topic_facet | Artificial intelligence Industrial applications Retail trade Marketing Intelligence artificielle ; Applications industrielles Commerce de détail marketing |
url | https://learning.oreilly.com/library/view/-/53863MIT65315/?ar |
work_keys_str_mv | AT nairdevadrita pairpeopleandaiforbetterproductdemandforecastinganewframeworkhelpsleadersorchestratehumanandaiagentstoaccuratelyforecastproductdemand AT saenzmariajesus pairpeopleandaiforbetterproductdemandforecastinganewframeworkhelpsleadersorchestratehumanandaiagentstoaccuratelyforecastproductdemand |