Math 0-1 matrix calculus in data science and machine learning

This course starts with an introduction to the key concepts and outlines the roadmap to success in the field. You'll begin by understanding the foundational elements of matrix and vector derivatives, exploring topics like linear and quadratic forms, chain rules in matrix form, and the derivativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: Lazy Programmer (Firm) (MitwirkendeR)
Format: Elektronisch Video
Sprache:English
Veröffentlicht: [Place of publication not identified] Packt Publishing 2024
Ausgabe:[First edition].
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000ngm a22000002 4500
001 ZDB-30-ORH-10085950X
003 DE-627-1
005 20240227122213.0
006 m o | |
007 cr uuu---uuuuu
008 240227s2024 xx ||| |o o ||eng c
020 |a 9781835886649  |c electronic video  |9 978-1-83588-664-9 
020 |a 1835886647  |c electronic video  |9 1-83588-664-7 
035 |a (DE-627-1)10085950X 
035 |a (DE-599)KEP10085950X 
035 |a (ORHE)9781835886649 
035 |a (DE-627-1)10085950X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23/eng/20240130 
245 1 0 |a Math 0-1  |b matrix calculus in data science and machine learning 
250 |a [First edition]. 
264 1 |a [Place of publication not identified]  |b Packt Publishing  |c 2024 
300 |a 1 online resource (1 video file (6 hr., 17 min.))  |b sound, color. 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online resource; title from title details screen (O'Reilly, viewed January 30, 2024) 
520 |a This course starts with an introduction to the key concepts and outlines the roadmap to success in the field. You'll begin by understanding the foundational elements of matrix and vector derivatives, exploring topics like linear and quadratic forms, chain rules in matrix form, and the derivative of determinants. Each concept is reinforced with exercises, ranging from quadratic challenges to least squares and Gaussian methods. The course progresses into optimization techniques essential in data science and machine learning. Delve into multi-dimensional second derivative tests, gradient descent in one and multiple dimensions, and Newton's method, including practical exercises in Newton's Method for least squares. An additional focus is set on setting up your environment, where you'll learn to establish an Anaconda environment and install crucial tools like Numpy, Scipy, and TensorFlow. The course also addresses effective learning strategies, answering pivotal questions like the suitability of YouTube for learning calculus and the recommended order for taking courses in this field. As you journey through the course, you'll transition from foundational concepts to advanced applications, equipping yourself with the skills needed to excel in data science and machine learning. What you will learn Understand matrix and vector derivatives Master linear and quadratic forms Apply the chain rule in matrix calculus Solve optimization problems using gradient descent and Newton's method Set up the Anaconda environment for machine learning Install and use key libraries like Numpy and TensorFlow Develop effective strategies for learning calculus in data science Audience This course suits students and professionals eager to learn the math behind AI, Data Science, and Machine Learning, ideal for deepening knowledge in these advanced technology fields. Learners should have a basic knowledge of linear algebra, calculus, and Python programming to effectively understand matrix calculus. A keen interest and enthusiasm for exploring this intricate subject are also crucial for a fulfilling learning experience. About the Author Lazy Programmer: The Lazy Programmer, a distinguished online educator, boasts dual master's degrees in computer engineering and statistics, with a decade-long specialization in machine learning, pattern recognition, and deep learning, where he authored pioneering courses. His professional journey includes enhancing online advertising and digital media, notably increasing click-through rates and revenue. As a versatile full-stack software engineer, he excels in Python, Ruby on Rails, C++, and more. His expansive knowledge covers areas like bioinformatics and algorithmic trading, showcasing his diverse skill set. Dedicated to simplifying complex topics, he stands as a pivotal figure in online education, adeptly navigating students through the nuances of data science and AI. 
650 0 |a Machine learning 
650 0 |a Computer science  |x Mathematics 
650 4 |a Apprentissage automatique 
650 4 |a Informatique ; Mathématiques 
650 4 |a Instructional films 
650 4 |a Nonfiction films 
650 4 |a Internet videos 
650 4 |a Films de formation 
650 4 |a Films autres que de fiction 
650 4 |a Vidéos sur Internet 
710 2 |a Lazy Programmer (Firm),  |e MitwirkendeR  |4 ctb 
710 2 |a Packt Publishing,  |e Verlag  |4 pbl 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781835886649/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
935 |c vide 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-10085950X
_version_ 1818767372664700928
adam_text
any_adam_object
author_corporate Lazy Programmer (Firm)
author_corporate_role ctb
author_facet Lazy Programmer (Firm)
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)10085950X
(DE-599)KEP10085950X
(ORHE)9781835886649
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition [First edition].
format Electronic
Video
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04725ngm a22005052 4500</leader><controlfield tag="001">ZDB-30-ORH-10085950X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240227122213.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240227s2024 xx ||| |o o ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781835886649</subfield><subfield code="c">electronic video</subfield><subfield code="9">978-1-83588-664-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1835886647</subfield><subfield code="c">electronic video</subfield><subfield code="9">1-83588-664-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10085950X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP10085950X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781835886649</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10085950X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20240130</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Math 0-1</subfield><subfield code="b">matrix calculus in data science and machine learning</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (6 hr., 17 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed January 30, 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This course starts with an introduction to the key concepts and outlines the roadmap to success in the field. You'll begin by understanding the foundational elements of matrix and vector derivatives, exploring topics like linear and quadratic forms, chain rules in matrix form, and the derivative of determinants. Each concept is reinforced with exercises, ranging from quadratic challenges to least squares and Gaussian methods. The course progresses into optimization techniques essential in data science and machine learning. Delve into multi-dimensional second derivative tests, gradient descent in one and multiple dimensions, and Newton's method, including practical exercises in Newton's Method for least squares. An additional focus is set on setting up your environment, where you'll learn to establish an Anaconda environment and install crucial tools like Numpy, Scipy, and TensorFlow. The course also addresses effective learning strategies, answering pivotal questions like the suitability of YouTube for learning calculus and the recommended order for taking courses in this field. As you journey through the course, you'll transition from foundational concepts to advanced applications, equipping yourself with the skills needed to excel in data science and machine learning. What you will learn Understand matrix and vector derivatives Master linear and quadratic forms Apply the chain rule in matrix calculus Solve optimization problems using gradient descent and Newton's method Set up the Anaconda environment for machine learning Install and use key libraries like Numpy and TensorFlow Develop effective strategies for learning calculus in data science Audience This course suits students and professionals eager to learn the math behind AI, Data Science, and Machine Learning, ideal for deepening knowledge in these advanced technology fields. Learners should have a basic knowledge of linear algebra, calculus, and Python programming to effectively understand matrix calculus. A keen interest and enthusiasm for exploring this intricate subject are also crucial for a fulfilling learning experience. About the Author Lazy Programmer: The Lazy Programmer, a distinguished online educator, boasts dual master's degrees in computer engineering and statistics, with a decade-long specialization in machine learning, pattern recognition, and deep learning, where he authored pioneering courses. His professional journey includes enhancing online advertising and digital media, notably increasing click-through rates and revenue. As a versatile full-stack software engineer, he excels in Python, Ruby on Rails, C++, and more. His expansive knowledge covers areas like bioinformatics and algorithmic trading, showcasing his diverse skill set. Dedicated to simplifying complex topics, he stands as a pivotal figure in online education, adeptly navigating students through the nuances of data science and AI.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique ; Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Lazy Programmer (Firm),</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Packt Publishing,</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781835886649/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-10085950X
illustrated Not Illustrated
indexdate 2024-12-18T08:48:50Z
institution BVB
isbn 9781835886649
1835886647
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 video file (6 hr., 17 min.)) sound, color.
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Packt Publishing
record_format marc
spelling Math 0-1 matrix calculus in data science and machine learning
[First edition].
[Place of publication not identified] Packt Publishing 2024
1 online resource (1 video file (6 hr., 17 min.)) sound, color.
zweidimensionales bewegtes Bild tdi rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Online resource; title from title details screen (O'Reilly, viewed January 30, 2024)
This course starts with an introduction to the key concepts and outlines the roadmap to success in the field. You'll begin by understanding the foundational elements of matrix and vector derivatives, exploring topics like linear and quadratic forms, chain rules in matrix form, and the derivative of determinants. Each concept is reinforced with exercises, ranging from quadratic challenges to least squares and Gaussian methods. The course progresses into optimization techniques essential in data science and machine learning. Delve into multi-dimensional second derivative tests, gradient descent in one and multiple dimensions, and Newton's method, including practical exercises in Newton's Method for least squares. An additional focus is set on setting up your environment, where you'll learn to establish an Anaconda environment and install crucial tools like Numpy, Scipy, and TensorFlow. The course also addresses effective learning strategies, answering pivotal questions like the suitability of YouTube for learning calculus and the recommended order for taking courses in this field. As you journey through the course, you'll transition from foundational concepts to advanced applications, equipping yourself with the skills needed to excel in data science and machine learning. What you will learn Understand matrix and vector derivatives Master linear and quadratic forms Apply the chain rule in matrix calculus Solve optimization problems using gradient descent and Newton's method Set up the Anaconda environment for machine learning Install and use key libraries like Numpy and TensorFlow Develop effective strategies for learning calculus in data science Audience This course suits students and professionals eager to learn the math behind AI, Data Science, and Machine Learning, ideal for deepening knowledge in these advanced technology fields. Learners should have a basic knowledge of linear algebra, calculus, and Python programming to effectively understand matrix calculus. A keen interest and enthusiasm for exploring this intricate subject are also crucial for a fulfilling learning experience. About the Author Lazy Programmer: The Lazy Programmer, a distinguished online educator, boasts dual master's degrees in computer engineering and statistics, with a decade-long specialization in machine learning, pattern recognition, and deep learning, where he authored pioneering courses. His professional journey includes enhancing online advertising and digital media, notably increasing click-through rates and revenue. As a versatile full-stack software engineer, he excels in Python, Ruby on Rails, C++, and more. His expansive knowledge covers areas like bioinformatics and algorithmic trading, showcasing his diverse skill set. Dedicated to simplifying complex topics, he stands as a pivotal figure in online education, adeptly navigating students through the nuances of data science and AI.
Machine learning
Computer science Mathematics
Apprentissage automatique
Informatique ; Mathématiques
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
Lazy Programmer (Firm), MitwirkendeR ctb
Packt Publishing, Verlag pbl
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781835886649/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Math 0-1 matrix calculus in data science and machine learning
Machine learning
Computer science Mathematics
Apprentissage automatique
Informatique ; Mathématiques
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
title Math 0-1 matrix calculus in data science and machine learning
title_auth Math 0-1 matrix calculus in data science and machine learning
title_exact_search Math 0-1 matrix calculus in data science and machine learning
title_full Math 0-1 matrix calculus in data science and machine learning
title_fullStr Math 0-1 matrix calculus in data science and machine learning
title_full_unstemmed Math 0-1 matrix calculus in data science and machine learning
title_short Math 0-1
title_sort math 0 1 matrix calculus in data science and machine learning
title_sub matrix calculus in data science and machine learning
topic Machine learning
Computer science Mathematics
Apprentissage automatique
Informatique ; Mathématiques
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
topic_facet Machine learning
Computer science Mathematics
Apprentissage automatique
Informatique ; Mathématiques
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
url https://learning.oreilly.com/library/view/-/9781835886649/?ar
work_keys_str_mv AT lazyprogrammerfirm math01matrixcalculusindatascienceandmachinelearning
AT packtpublishing math01matrixcalculusindatascienceandmachinelearning