Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch

This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adari, Suman Kalyan (VerfasserIn), Alla, Sridhar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Apress [2024]
Ausgabe:Second edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-100396216
003 DE-627-1
005 20240228122127.0
007 cr uuu---uuuuu
008 240129s2024 xx |||||o 00| ||eng c
020 |a 9798868800085  |c electronic bk.  |9 979-8-8688-0008-5 
035 |a (DE-627-1)100396216 
035 |a (DE-599)KEP100396216 
035 |a (ORHE)9798868800085 
035 |a (DE-627-1)100396216 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 |a 005.8  |2 23/eng/20240112 
100 1 |a Adari, Suman Kalyan  |e VerfasserIn  |4 aut 
245 1 0 |a Beginning anomaly detection using Python-based deep learning  |b implement anomaly detection applications with Keras and PyTorch  |c Suman Kalyan Adari, Sridhar Alla 
250 |a Second edition. 
264 1 |a New York, NY  |b Apress  |c [2024] 
300 |a 1 online resource (538 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes index 
520 |a This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection. 
650 0 |a Anomaly detection (Computer security) 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning 
650 4 |a Détection d'anomalies (Sécurité informatique) 
650 4 |a Python (Langage de programmation) 
650 4 |a Apprentissage automatique 
700 1 |a Alla, Sridhar  |e VerfasserIn  |4 aut 
776 1 |z 9798868800078 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9798868800078 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9798868800085/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-100396216
_version_ 1818767373206814720
adam_text
any_adam_object
author Adari, Suman Kalyan
Alla, Sridhar
author_facet Adari, Suman Kalyan
Alla, Sridhar
author_role aut
aut
author_sort Adari, Suman Kalyan
author_variant s k a sk ska
s a sa
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)100396216
(DE-599)KEP100396216
(ORHE)9798868800085
dewey-full 005.8
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.8
dewey-search 005.8
dewey-sort 15.8
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition Second edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04341cam a22004692 4500</leader><controlfield tag="001">ZDB-30-ORH-100396216</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240129s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798868800085</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">979-8-8688-0008-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100396216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100396216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9798868800085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100396216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.8</subfield><subfield code="2">23/eng/20240112</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adari, Suman Kalyan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning anomaly detection using Python-based deep learning</subfield><subfield code="b">implement anomaly detection applications with Keras and PyTorch</subfield><subfield code="c">Suman Kalyan Adari, Sridhar Alla</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (538 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Anomaly detection (Computer security)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Détection d'anomalies (Sécurité informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alla, Sridhar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9798868800078</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798868800078</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9798868800085/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-100396216
illustrated Illustrated
indexdate 2024-12-18T08:48:51Z
institution BVB
isbn 9798868800085
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (538 pages) illustrations
psigel ZDB-30-ORH
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Apress
record_format marc
spelling Adari, Suman Kalyan VerfasserIn aut
Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla
Second edition.
New York, NY Apress [2024]
1 online resource (538 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes index
This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.
Anomaly detection (Computer security)
Python (Computer program language)
Machine learning
Détection d'anomalies (Sécurité informatique)
Python (Langage de programmation)
Apprentissage automatique
Alla, Sridhar VerfasserIn aut
9798868800078
Erscheint auch als Druck-Ausgabe 9798868800078
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9798868800085/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Adari, Suman Kalyan
Alla, Sridhar
Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch
Anomaly detection (Computer security)
Python (Computer program language)
Machine learning
Détection d'anomalies (Sécurité informatique)
Python (Langage de programmation)
Apprentissage automatique
title Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch
title_auth Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch
title_exact_search Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch
title_full Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla
title_fullStr Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla
title_full_unstemmed Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla
title_short Beginning anomaly detection using Python-based deep learning
title_sort beginning anomaly detection using python based deep learning implement anomaly detection applications with keras and pytorch
title_sub implement anomaly detection applications with Keras and PyTorch
topic Anomaly detection (Computer security)
Python (Computer program language)
Machine learning
Détection d'anomalies (Sécurité informatique)
Python (Langage de programmation)
Apprentissage automatique
topic_facet Anomaly detection (Computer security)
Python (Computer program language)
Machine learning
Détection d'anomalies (Sécurité informatique)
Python (Langage de programmation)
Apprentissage automatique
url https://learning.oreilly.com/library/view/-/9798868800085/?ar
work_keys_str_mv AT adarisumankalyan beginninganomalydetectionusingpythonbaseddeeplearningimplementanomalydetectionapplicationswithkerasandpytorch
AT allasridhar beginninganomalydetectionusingpythonbaseddeeplearningimplementanomalydetectionapplicationswithkerasandpytorch