Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch
This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Apress
[2024]
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100396216 | ||
003 | DE-627-1 | ||
005 | 20240228122127.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240129s2024 xx |||||o 00| ||eng c | ||
020 | |a 9798868800085 |c electronic bk. |9 979-8-8688-0008-5 | ||
035 | |a (DE-627-1)100396216 | ||
035 | |a (DE-599)KEP100396216 | ||
035 | |a (ORHE)9798868800085 | ||
035 | |a (DE-627-1)100396216 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a UYQ |2 bicssc | |
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 0 | |a 005.8 |2 23/eng/20240112 | |
100 | 1 | |a Adari, Suman Kalyan |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Beginning anomaly detection using Python-based deep learning |b implement anomaly detection applications with Keras and PyTorch |c Suman Kalyan Adari, Sridhar Alla |
250 | |a Second edition. | ||
264 | 1 | |a New York, NY |b Apress |c [2024] | |
300 | |a 1 online resource (538 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection. | ||
650 | 0 | |a Anomaly detection (Computer security) | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Machine learning | |
650 | 4 | |a Détection d'anomalies (Sécurité informatique) | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Apprentissage automatique | |
700 | 1 | |a Alla, Sridhar |e VerfasserIn |4 aut | |
776 | 1 | |z 9798868800078 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9798868800078 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9798868800085/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100396216 |
---|---|
_version_ | 1818767373206814720 |
adam_text | |
any_adam_object | |
author | Adari, Suman Kalyan Alla, Sridhar |
author_facet | Adari, Suman Kalyan Alla, Sridhar |
author_role | aut aut |
author_sort | Adari, Suman Kalyan |
author_variant | s k a sk ska s a sa |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100396216 (DE-599)KEP100396216 (ORHE)9798868800085 |
dewey-full | 005.8 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8 |
dewey-search | 005.8 |
dewey-sort | 15.8 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04341cam a22004692 4500</leader><controlfield tag="001">ZDB-30-ORH-100396216</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240129s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798868800085</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">979-8-8688-0008-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100396216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100396216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9798868800085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100396216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.8</subfield><subfield code="2">23/eng/20240112</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adari, Suman Kalyan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning anomaly detection using Python-based deep learning</subfield><subfield code="b">implement anomaly detection applications with Keras and PyTorch</subfield><subfield code="c">Suman Kalyan Adari, Sridhar Alla</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (538 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Anomaly detection (Computer security)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Détection d'anomalies (Sécurité informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alla, Sridhar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9798868800078</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798868800078</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9798868800085/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100396216 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:48:51Z |
institution | BVB |
isbn | 9798868800085 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (538 pages) illustrations |
psigel | ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Apress |
record_format | marc |
spelling | Adari, Suman Kalyan VerfasserIn aut Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla Second edition. New York, NY Apress [2024] 1 online resource (538 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection. Anomaly detection (Computer security) Python (Computer program language) Machine learning Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) Apprentissage automatique Alla, Sridhar VerfasserIn aut 9798868800078 Erscheint auch als Druck-Ausgabe 9798868800078 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9798868800085/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Adari, Suman Kalyan Alla, Sridhar Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Anomaly detection (Computer security) Python (Computer program language) Machine learning Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) Apprentissage automatique |
title | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch |
title_auth | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch |
title_exact_search | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch |
title_full | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla |
title_fullStr | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla |
title_full_unstemmed | Beginning anomaly detection using Python-based deep learning implement anomaly detection applications with Keras and PyTorch Suman Kalyan Adari, Sridhar Alla |
title_short | Beginning anomaly detection using Python-based deep learning |
title_sort | beginning anomaly detection using python based deep learning implement anomaly detection applications with keras and pytorch |
title_sub | implement anomaly detection applications with Keras and PyTorch |
topic | Anomaly detection (Computer security) Python (Computer program language) Machine learning Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) Apprentissage automatique |
topic_facet | Anomaly detection (Computer security) Python (Computer program language) Machine learning Détection d'anomalies (Sécurité informatique) Python (Langage de programmation) Apprentissage automatique |
url | https://learning.oreilly.com/library/view/-/9798868800085/?ar |
work_keys_str_mv | AT adarisumankalyan beginninganomalydetectionusingpythonbaseddeeplearningimplementanomalydetectionapplicationswithkerasandpytorch AT allasridhar beginninganomalydetectionusingpythonbaseddeeplearningimplementanomalydetectionapplicationswithkerasandpytorch |