Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This compr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK
Packt Publishing Ltd.
2023
|
Ausgabe: | [First edition]. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100066550 | ||
003 | DE-627-1 | ||
005 | 20240228122113.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240104s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781801070836 |9 978-1-80107-083-6 | ||
035 | |a (DE-627-1)100066550 | ||
035 | |a (DE-599)KEP100066550 | ||
035 | |a (ORHE)9781801070836 | ||
035 | |a (DE-627-1)100066550 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20231205 | |
100 | 1 | |a Abhishek, Kumar |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning for imbalanced data |b tackle imbalanced datasets using machine learning and deep learning techniques |c Kumar Abhishek, Dr. Mounir Abdelaziz |
250 | |a [First edition]. | ||
264 | 1 | |a Birmingham, UK |b Packt Publishing Ltd. |c 2023 | |
300 | |a 1 online resource (344 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Data sets | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Jeux de données | |
700 | 1 | |a Abdelaziz, Mounir |e VerfasserIn |4 aut | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781801070836/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100066550 |
---|---|
_version_ | 1818767374056161280 |
adam_text | |
any_adam_object | |
author | Abhishek, Kumar Abdelaziz, Mounir |
author_facet | Abhishek, Kumar Abdelaziz, Mounir |
author_role | aut aut |
author_sort | Abhishek, Kumar |
author_variant | k a ka m a ma |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100066550 (DE-599)KEP100066550 (ORHE)9781801070836 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02721cam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-100066550</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122113.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801070836</subfield><subfield code="9">978-1-80107-083-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100066550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781801070836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20231205</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhishek, Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for imbalanced data</subfield><subfield code="b">tackle imbalanced datasets using machine learning and deep learning techniques</subfield><subfield code="c">Kumar Abhishek, Dr. Mounir Abdelaziz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (344 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jeux de données</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelaziz, Mounir</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781801070836/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100066550 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:48:52Z |
institution | BVB |
isbn | 9781801070836 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (344 pages) illustrations |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing Ltd. |
record_format | marc |
spelling | Abhishek, Kumar VerfasserIn aut Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz [First edition]. Birmingham, UK Packt Publishing Ltd. 2023 1 online resource (344 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models. Machine learning Data sets Apprentissage automatique Jeux de données Abdelaziz, Mounir VerfasserIn aut TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781801070836/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Abhishek, Kumar Abdelaziz, Mounir Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Machine learning Data sets Apprentissage automatique Jeux de données |
title | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques |
title_auth | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques |
title_exact_search | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques |
title_full | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz |
title_fullStr | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz |
title_full_unstemmed | Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz |
title_short | Machine learning for imbalanced data |
title_sort | machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques |
title_sub | tackle imbalanced datasets using machine learning and deep learning techniques |
topic | Machine learning Data sets Apprentissage automatique Jeux de données |
topic_facet | Machine learning Data sets Apprentissage automatique Jeux de données |
url | https://learning.oreilly.com/library/view/-/9781801070836/?ar |
work_keys_str_mv | AT abhishekkumar machinelearningforimbalanceddatatackleimbalanceddatasetsusingmachinelearninganddeeplearningtechniques AT abdelazizmounir machinelearningforimbalanceddatatackleimbalanceddatasetsusingmachinelearninganddeeplearningtechniques |