Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques

As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abhishek, Kumar (VerfasserIn), Abdelaziz, Mounir (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham, UK Packt Publishing Ltd. 2023
Ausgabe:[First edition].
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-100066550
003 DE-627-1
005 20240228122113.0
007 cr uuu---uuuuu
008 240104s2023 xx |||||o 00| ||eng c
020 |a 9781801070836  |9 978-1-80107-083-6 
035 |a (DE-627-1)100066550 
035 |a (DE-599)KEP100066550 
035 |a (ORHE)9781801070836 
035 |a (DE-627-1)100066550 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23/eng/20231205 
100 1 |a Abhishek, Kumar  |e VerfasserIn  |4 aut 
245 1 0 |a Machine learning for imbalanced data  |b tackle imbalanced datasets using machine learning and deep learning techniques  |c Kumar Abhishek, Dr. Mounir Abdelaziz 
250 |a [First edition]. 
264 1 |a Birmingham, UK  |b Packt Publishing Ltd.  |c 2023 
300 |a 1 online resource (344 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index 
520 |a As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models. 
650 0 |a Machine learning 
650 0 |a Data sets 
650 4 |a Apprentissage automatique 
650 4 |a Jeux de données 
700 1 |a Abdelaziz, Mounir  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781801070836/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-100066550
_version_ 1818767374056161280
adam_text
any_adam_object
author Abhishek, Kumar
Abdelaziz, Mounir
author_facet Abhishek, Kumar
Abdelaziz, Mounir
author_role aut
aut
author_sort Abhishek, Kumar
author_variant k a ka
m a ma
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)100066550
(DE-599)KEP100066550
(ORHE)9781801070836
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition [First edition].
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02721cam a22003972 4500</leader><controlfield tag="001">ZDB-30-ORH-100066550</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122113.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801070836</subfield><subfield code="9">978-1-80107-083-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100066550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781801070836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20231205</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhishek, Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for imbalanced data</subfield><subfield code="b">tackle imbalanced datasets using machine learning and deep learning techniques</subfield><subfield code="c">Kumar Abhishek, Dr. Mounir Abdelaziz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (344 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jeux de données</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelaziz, Mounir</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781801070836/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-100066550
illustrated Illustrated
indexdate 2024-12-18T08:48:52Z
institution BVB
isbn 9781801070836
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (344 pages) illustrations
psigel ZDB-30-ORH
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Packt Publishing Ltd.
record_format marc
spelling Abhishek, Kumar VerfasserIn aut
Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz
[First edition].
Birmingham, UK Packt Publishing Ltd. 2023
1 online resource (344 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance. Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods. As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique. By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.
Machine learning
Data sets
Apprentissage automatique
Jeux de données
Abdelaziz, Mounir VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781801070836/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Abhishek, Kumar
Abdelaziz, Mounir
Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
Machine learning
Data sets
Apprentissage automatique
Jeux de données
title Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
title_auth Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
title_exact_search Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
title_full Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz
title_fullStr Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz
title_full_unstemmed Machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz
title_short Machine learning for imbalanced data
title_sort machine learning for imbalanced data tackle imbalanced datasets using machine learning and deep learning techniques
title_sub tackle imbalanced datasets using machine learning and deep learning techniques
topic Machine learning
Data sets
Apprentissage automatique
Jeux de données
topic_facet Machine learning
Data sets
Apprentissage automatique
Jeux de données
url https://learning.oreilly.com/library/view/-/9781801070836/?ar
work_keys_str_mv AT abhishekkumar machinelearningforimbalanceddatatackleimbalanceddatasetsusingmachinelearninganddeeplearningtechniques
AT abdelazizmounir machinelearningforimbalanceddatatackleimbalanceddatasetsusingmachinelearninganddeeplearningtechniques