Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs
This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative te...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Berkeley, CA]
Apress
[2023]
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100066003 | ||
003 | DE-627-1 | ||
005 | 20240228122110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240104s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781484299944 |c electronic bk. |9 978-1-4842-9994-4 | ||
020 | |a 1484299949 |c electronic bk. |9 1-4842-9994-9 | ||
035 | |a (DE-627-1)100066003 | ||
035 | |a (DE-599)KEP100066003 | ||
035 | |a (ORHE)9781484299944 | ||
035 | |a (DE-627-1)100066003 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3 |2 23/eng/20231212 | |
100 | 1 | |a Kulkarni, Akshay |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Applied generative AI for beginners |b practical knowledge on diffusion models, ChatGPT, and other LLMs |c Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada |
264 | 1 | |a [Berkeley, CA] |b Apress |c [2023] | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023) | ||
520 | |a This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights. | ||
650 | 0 | |a Artificial intelligence | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a artificial intelligence | |
700 | 1 | |a Shivananda, Adarsha |e VerfasserIn |4 aut | |
700 | 1 | |a Kulkarni, Anoosh |e VerfasserIn |4 aut | |
700 | 1 | |a Gudivada, Dilip |e VerfasserIn |4 aut | |
776 | 1 | |z 1484299930 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484299930 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484299944/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100066003 |
---|---|
_version_ | 1818767374196670464 |
adam_text | |
any_adam_object | |
author | Kulkarni, Akshay Shivananda, Adarsha Kulkarni, Anoosh Gudivada, Dilip |
author_facet | Kulkarni, Akshay Shivananda, Adarsha Kulkarni, Anoosh Gudivada, Dilip |
author_role | aut aut aut aut |
author_sort | Kulkarni, Akshay |
author_variant | a k ak a s as a k ak d g dg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100066003 (DE-599)KEP100066003 (ORHE)9781484299944 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03844cam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-100066003</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484299944</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-9994-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484299949</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-9994-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100066003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484299944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066003</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20231212</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulkarni, Akshay</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied generative AI for beginners</subfield><subfield code="b">practical knowledge on diffusion models, ChatGPT, and other LLMs</subfield><subfield code="c">Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley, CA]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shivananda, Adarsha</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, Anoosh</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gudivada, Dilip</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484299930</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484299930</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484299944/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100066003 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:52Z |
institution | BVB |
isbn | 9781484299944 1484299949 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Apress |
record_format | marc |
spelling | Kulkarni, Akshay VerfasserIn aut Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada [Berkeley, CA] Apress [2023] 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023) This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights. Artificial intelligence Intelligence artificielle artificial intelligence Shivananda, Adarsha VerfasserIn aut Kulkarni, Anoosh VerfasserIn aut Gudivada, Dilip VerfasserIn aut 1484299930 Erscheint auch als Druck-Ausgabe 1484299930 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781484299944/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Kulkarni, Akshay Shivananda, Adarsha Kulkarni, Anoosh Gudivada, Dilip Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Artificial intelligence Intelligence artificielle artificial intelligence |
title | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs |
title_auth | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs |
title_exact_search | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs |
title_full | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada |
title_fullStr | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada |
title_full_unstemmed | Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada |
title_short | Applied generative AI for beginners |
title_sort | applied generative ai for beginners practical knowledge on diffusion models chatgpt and other llms |
title_sub | practical knowledge on diffusion models, ChatGPT, and other LLMs |
topic | Artificial intelligence Intelligence artificielle artificial intelligence |
topic_facet | Artificial intelligence Intelligence artificielle artificial intelligence |
url | https://learning.oreilly.com/library/view/-/9781484299944/?ar |
work_keys_str_mv | AT kulkarniakshay appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms AT shivanandaadarsha appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms AT kulkarnianoosh appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms AT gudivadadilip appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms |