Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs

This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kulkarni, Akshay (VerfasserIn), Shivananda, Adarsha (VerfasserIn), Kulkarni, Anoosh (VerfasserIn), Gudivada, Dilip (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Berkeley, CA] Apress [2023]
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-100066003
003 DE-627-1
005 20240228122110.0
007 cr uuu---uuuuu
008 240104s2023 xx |||||o 00| ||eng c
020 |a 9781484299944  |c electronic bk.  |9 978-1-4842-9994-4 
020 |a 1484299949  |c electronic bk.  |9 1-4842-9994-9 
035 |a (DE-627-1)100066003 
035 |a (DE-599)KEP100066003 
035 |a (ORHE)9781484299944 
035 |a (DE-627-1)100066003 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3  |2 23/eng/20231212 
100 1 |a Kulkarni, Akshay  |e VerfasserIn  |4 aut 
245 1 0 |a Applied generative AI for beginners  |b practical knowledge on diffusion models, ChatGPT, and other LLMs  |c Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada 
264 1 |a [Berkeley, CA]  |b Apress  |c [2023] 
300 |a 1 online resource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023) 
520 |a This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights. 
650 0 |a Artificial intelligence 
650 4 |a Intelligence artificielle 
650 4 |a artificial intelligence 
700 1 |a Shivananda, Adarsha  |e VerfasserIn  |4 aut 
700 1 |a Kulkarni, Anoosh  |e VerfasserIn  |4 aut 
700 1 |a Gudivada, Dilip  |e VerfasserIn  |4 aut 
776 1 |z 1484299930 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 1484299930 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781484299944/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-100066003
_version_ 1818767374196670464
adam_text
any_adam_object
author Kulkarni, Akshay
Shivananda, Adarsha
Kulkarni, Anoosh
Gudivada, Dilip
author_facet Kulkarni, Akshay
Shivananda, Adarsha
Kulkarni, Anoosh
Gudivada, Dilip
author_role aut
aut
aut
aut
author_sort Kulkarni, Akshay
author_variant a k ak
a s as
a k ak
d g dg
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)100066003
(DE-599)KEP100066003
(ORHE)9781484299944
dewey-full 006.3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3
dewey-search 006.3
dewey-sort 16.3
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03844cam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-100066003</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484299944</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-9994-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484299949</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-9994-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100066003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484299944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100066003</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20231212</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulkarni, Akshay</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied generative AI for beginners</subfield><subfield code="b">practical knowledge on diffusion models, ChatGPT, and other LLMs</subfield><subfield code="c">Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley, CA]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shivananda, Adarsha</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, Anoosh</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gudivada, Dilip</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484299930</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484299930</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484299944/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-100066003
illustrated Not Illustrated
indexdate 2024-12-18T08:48:52Z
institution BVB
isbn 9781484299944
1484299949
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource
psigel ZDB-30-ORH
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Apress
record_format marc
spelling Kulkarni, Akshay VerfasserIn aut
Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada
[Berkeley, CA] Apress [2023]
1 online resource
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes index. - Description based on online resource; title from digital title page (viewed on December 08, 2023)
This book provides a deep dive into the world of generative AI, covering everything from the basics of neural networks to the intricacies of large language models like ChatGPT and Google Bard. It serves as a one-stop resource for anyone interested in understanding and applying this transformative technology and is particularly aimed at those just getting started with generative AI. Applied Generative AI for Beginners is structured around detailed chapters that will guide you from foundational knowledge to practical implementation. It starts with an introduction to generative AI and its current landscape, followed by an exploration of how the evolution of neural networks led to the development of large language models. The book then delves into specific architectures like ChatGPT and Google Bard, offering hands-on demonstrations for implementation using tools like Sklearn. Youll also gain insight into the strategic aspects of implementing generative AI in an enterprise setting, with the authors covering crucial topics such as LLMOps, technology stack selection, and in-context learning. The latter part of the book explores generative AI for images and provides industry-specific use cases, making it a comprehensive guide for practical application in various domains. Whether you're a data scientist looking to implement advanced models, a business leader aiming to leverage AI for enterprise growth, or an academic interested in cutting-edge advancements, this book offers a concise yet thorough guide to mastering generative AI, balancing theoretical knowledge with practical insights. You will: Gain a solid understanding of generative AI, starting from the basics of neural networks and progressing to complex architectures like ChatGPT and Google Bard Implement large language models using Sklearn, complete with code examples and best practices for real-world application Learn how to integrate LLMs in enterprises, including aspects like LLMOps and technology stack selection Understand how generative AI can be applied across various industries, from healthcare and marketing to legal compliance through detailed use cases and actionable insights.
Artificial intelligence
Intelligence artificielle
artificial intelligence
Shivananda, Adarsha VerfasserIn aut
Kulkarni, Anoosh VerfasserIn aut
Gudivada, Dilip VerfasserIn aut
1484299930
Erscheint auch als Druck-Ausgabe 1484299930
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781484299944/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Kulkarni, Akshay
Shivananda, Adarsha
Kulkarni, Anoosh
Gudivada, Dilip
Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs
Artificial intelligence
Intelligence artificielle
artificial intelligence
title Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs
title_auth Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs
title_exact_search Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs
title_full Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada
title_fullStr Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada
title_full_unstemmed Applied generative AI for beginners practical knowledge on diffusion models, ChatGPT, and other LLMs Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada
title_short Applied generative AI for beginners
title_sort applied generative ai for beginners practical knowledge on diffusion models chatgpt and other llms
title_sub practical knowledge on diffusion models, ChatGPT, and other LLMs
topic Artificial intelligence
Intelligence artificielle
artificial intelligence
topic_facet Artificial intelligence
Intelligence artificielle
artificial intelligence
url https://learning.oreilly.com/library/view/-/9781484299944/?ar
work_keys_str_mv AT kulkarniakshay appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms
AT shivanandaadarsha appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms
AT kulkarnianoosh appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms
AT gudivadadilip appliedgenerativeaiforbeginnerspracticalknowledgeondiffusionmodelschatgptandotherllms