Fast Python
Master Python techniques and libraries to reduce run times, efficiently handle huge datasets, and optimize execution for complex machine learning applications. Fast Python is a toolbox of techniques for high performance Python including: Writing efficient pure-Python code Optimizing the NumPy and pa...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified]
Manning Publications
[2023]
|
Ausgabe: | Video edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-098492225 | ||
003 | DE-627-1 | ||
005 | 20240228122105.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 231127s2023 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)098492225 | ||
035 | |a (DE-599)KEP098492225 | ||
035 | |a (ORHE)9781617297939VE | ||
035 | |a (DE-627-1)098492225 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23/eng/20231115 | |
100 | 1 | |a Antao, Tiago |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Fast Python |c Tiago Antao |
250 | |a Video edition. | ||
264 | 1 | |a [Place of publication not identified] |b Manning Publications |c [2023] | |
300 | |a 1 online resource (1 video file (8 hr., 53 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title details screen (O'Reilly, viewed November 15, 2023) | ||
520 | |a Master Python techniques and libraries to reduce run times, efficiently handle huge datasets, and optimize execution for complex machine learning applications. Fast Python is a toolbox of techniques for high performance Python including: Writing efficient pure-Python code Optimizing the NumPy and pandas libraries Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing Fast Python is your guide to optimizing every part of your Python-based data analysis process, from the pure Python code you write to managing the resources of modern hardware and GPUs. You'll learn to rewrite inefficient data structures, improve underperforming code with multithreading, and simplify your datasets without sacrificing accuracy. Written for experienced practitioners, this book dives right into practical solutions for improving computation and storage efficiency. You'll experiment with fun and interesting examples such as rewriting games in Cython and implementing a MapReduce framework from scratch. Finally, you'll go deep into Python GPU computing and learn how modern hardware has rehabilitated some former antipatterns and made counterintuitive ideas the most efficient way of working. About the Technology Face it. Slow code will kill a big data project. Fast pure-Python code, optimized libraries, and fully utilized multiprocessor hardware are the price of entry for machine learning and large-scale data analysis. What you need are reliable solutions that respond faster to computing requirements while using less resources, and saving money. About the Book Fast Python is a toolbox of techniques for speeding up Python, with an emphasis on big data applications. Following the clear examples and precisely articulated details, you'll learn how to use common libraries like NumPy and pandas in more performant ways and transform data for efficient storage and I/O. More importantly, Fast Python takes a holistic approach to performance, so you'll see how to optimize the whole system, from code to architecture_._ What's Inside Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing About the Reader For intermediate Python programmers familiar with the basics of concurrency. About the Author Tiago Antao is one of the co-authors of Biopython, a major bioinformatics package written in Python. Quotes A great resource for learning how to create performant Python code. - Or Golan, Qedma Quantum Computing If you think Python is too slow, this book is for you! Parallelization. Vectorization. Using Cython and Numba to compile to C. Putting code onto a GPU to massively parallelize it. Buy a copy for every data scientist in your org. - James Liu, Mediaocean The time you invest reading this book will be repaid multifold in your project's design and the performance you'll gain. - Ruud Gijsen, Simbeyond. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Computer programming | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Programmation (Informatique) | |
650 | 4 | |a computer programming | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
710 | 2 | |a Manning (Firm), |e Verlag |4 pbl | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781617297939VE/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-098492225 |
---|---|
_version_ | 1818767374850981888 |
adam_text | |
any_adam_object | |
author | Antao, Tiago |
author_facet | Antao, Tiago |
author_role | aut |
author_sort | Antao, Tiago |
author_variant | t a ta |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)098492225 (DE-599)KEP098492225 (ORHE)9781617297939VE |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Video edition. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04677cgm a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-098492225</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122105.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231127s2023 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)098492225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP098492225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781617297939VE</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)098492225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23/eng/20231115</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Antao, Tiago</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Python</subfield><subfield code="c">Tiago Antao</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Video edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Manning Publications</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (8 hr., 53 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed November 15, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Master Python techniques and libraries to reduce run times, efficiently handle huge datasets, and optimize execution for complex machine learning applications. Fast Python is a toolbox of techniques for high performance Python including: Writing efficient pure-Python code Optimizing the NumPy and pandas libraries Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing Fast Python is your guide to optimizing every part of your Python-based data analysis process, from the pure Python code you write to managing the resources of modern hardware and GPUs. You'll learn to rewrite inefficient data structures, improve underperforming code with multithreading, and simplify your datasets without sacrificing accuracy. Written for experienced practitioners, this book dives right into practical solutions for improving computation and storage efficiency. You'll experiment with fun and interesting examples such as rewriting games in Cython and implementing a MapReduce framework from scratch. Finally, you'll go deep into Python GPU computing and learn how modern hardware has rehabilitated some former antipatterns and made counterintuitive ideas the most efficient way of working. About the Technology Face it. Slow code will kill a big data project. Fast pure-Python code, optimized libraries, and fully utilized multiprocessor hardware are the price of entry for machine learning and large-scale data analysis. What you need are reliable solutions that respond faster to computing requirements while using less resources, and saving money. About the Book Fast Python is a toolbox of techniques for speeding up Python, with an emphasis on big data applications. Following the clear examples and precisely articulated details, you'll learn how to use common libraries like NumPy and pandas in more performant ways and transform data for efficient storage and I/O. More importantly, Fast Python takes a holistic approach to performance, so you'll see how to optimize the whole system, from code to architecture_._ What's Inside Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing About the Reader For intermediate Python programmers familiar with the basics of concurrency. About the Author Tiago Antao is one of the co-authors of Biopython, a major bioinformatics package written in Python. Quotes A great resource for learning how to create performant Python code. - Or Golan, Qedma Quantum Computing If you think Python is too slow, this book is for you! Parallelization. Vectorization. Using Cython and Numba to compile to C. Putting code onto a GPU to massively parallelize it. Buy a copy for every data scientist in your org. - James Liu, Mediaocean The time you invest reading this book will be repaid multifold in your project's design and the performance you'll gain. - Ruud Gijsen, Simbeyond.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmation (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Manning (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781617297939VE/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-098492225 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:52Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 video file (8 hr., 53 min.)) sound, color. |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Manning Publications |
record_format | marc |
spelling | Antao, Tiago VerfasserIn aut Fast Python Tiago Antao Video edition. [Place of publication not identified] Manning Publications [2023] 1 online resource (1 video file (8 hr., 53 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title details screen (O'Reilly, viewed November 15, 2023) Master Python techniques and libraries to reduce run times, efficiently handle huge datasets, and optimize execution for complex machine learning applications. Fast Python is a toolbox of techniques for high performance Python including: Writing efficient pure-Python code Optimizing the NumPy and pandas libraries Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing Fast Python is your guide to optimizing every part of your Python-based data analysis process, from the pure Python code you write to managing the resources of modern hardware and GPUs. You'll learn to rewrite inefficient data structures, improve underperforming code with multithreading, and simplify your datasets without sacrificing accuracy. Written for experienced practitioners, this book dives right into practical solutions for improving computation and storage efficiency. You'll experiment with fun and interesting examples such as rewriting games in Cython and implementing a MapReduce framework from scratch. Finally, you'll go deep into Python GPU computing and learn how modern hardware has rehabilitated some former antipatterns and made counterintuitive ideas the most efficient way of working. About the Technology Face it. Slow code will kill a big data project. Fast pure-Python code, optimized libraries, and fully utilized multiprocessor hardware are the price of entry for machine learning and large-scale data analysis. What you need are reliable solutions that respond faster to computing requirements while using less resources, and saving money. About the Book Fast Python is a toolbox of techniques for speeding up Python, with an emphasis on big data applications. Following the clear examples and precisely articulated details, you'll learn how to use common libraries like NumPy and pandas in more performant ways and transform data for efficient storage and I/O. More importantly, Fast Python takes a holistic approach to performance, so you'll see how to optimize the whole system, from code to architecture_._ What's Inside Rewriting critical code in Cython Designing persistent data structures Tailoring code for different architectures Implementing Python GPU computing About the Reader For intermediate Python programmers familiar with the basics of concurrency. About the Author Tiago Antao is one of the co-authors of Biopython, a major bioinformatics package written in Python. Quotes A great resource for learning how to create performant Python code. - Or Golan, Qedma Quantum Computing If you think Python is too slow, this book is for you! Parallelization. Vectorization. Using Cython and Numba to compile to C. Putting code onto a GPU to massively parallelize it. Buy a copy for every data scientist in your org. - James Liu, Mediaocean The time you invest reading this book will be repaid multifold in your project's design and the performance you'll gain. - Ruud Gijsen, Simbeyond. Python (Computer program language) Computer programming Python (Langage de programmation) Programmation (Informatique) computer programming Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet Manning (Firm), Verlag pbl TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781617297939VE/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Antao, Tiago Fast Python Python (Computer program language) Computer programming Python (Langage de programmation) Programmation (Informatique) computer programming Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
title | Fast Python |
title_auth | Fast Python |
title_exact_search | Fast Python |
title_full | Fast Python Tiago Antao |
title_fullStr | Fast Python Tiago Antao |
title_full_unstemmed | Fast Python Tiago Antao |
title_short | Fast Python |
title_sort | fast python |
topic | Python (Computer program language) Computer programming Python (Langage de programmation) Programmation (Informatique) computer programming Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Python (Computer program language) Computer programming Python (Langage de programmation) Programmation (Informatique) computer programming Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
url | https://learning.oreilly.com/library/view/-/9781617297939VE/?ar |
work_keys_str_mv | AT antaotiago fastpython AT manningfirm fastpython |