Machine learning for VLSI chip design

MACHINE LEARNING TECHNIQUES FOR VLSI CHIP DESIGN This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, the efficient hardware of machine learning applications with FPGA or CMOS circuits, and many other aspects and applications of machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Kumar, Abhishek (HerausgeberIn), Tripathi, Suman Lata (HerausgeberIn), Srinivasa Rau, K. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ Beverly, MA Wiley 2023
Hoboken, NJ Beverly, MA Scrivener Publishing 2023
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-096168102
003 DE-627-1
005 20240228122027.0
007 cr uuu---uuuuu
008 230907s2023 xx |||||o 00| ||eng c
020 |a 9781119910497  |c electronic book  |9 978-1-119-91049-7 
020 |a 1119910498  |c electronic book  |9 1-119-91049-8 
020 |a 9781119910480  |c electronic book  |9 978-1-119-91048-0 
020 |a 111991048X  |c electronic book  |9 1-119-91048-X 
020 |a 9781119910398  |9 978-1-119-91039-8 
035 |a (DE-627-1)096168102 
035 |a (DE-599)KEP096168102 
035 |a (ORHE)9781119910398 
035 |a (DE-627-1)096168102 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 621.39/5  |2 23/eng/20230725 
245 1 0 |a Machine learning for VLSI chip design  |c edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao 
264 1 |a Hoboken, NJ  |a Beverly, MA  |b Wiley  |c 2023 
264 1 |a Hoboken, NJ  |a Beverly, MA  |b Scrivener Publishing  |c 2023 
300 |a 1 online resource. 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on August 02, 2023) 
520 |a MACHINE LEARNING TECHNIQUES FOR VLSI CHIP DESIGN This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, the efficient hardware of machine learning applications with FPGA or CMOS circuits, and many other aspects and applications of machine learning techniques for VLSI chip design. Artificial intelligence (AI) and machine learning (ML) have, or will have, an impact on almost every aspect of our lives and every device that we own. AI has benefitted every industry in terms of computational speeds, accurate decision prediction, efficient machine learning (ML), and deep learning (DL) algorithms. The VLSI industry uses the electronic design automation tool (EDA), and the integration with ML helps in reducing design time and cost of production. Finding defects, bugs, and hardware Trojans in the design with ML or DL can save losses during production. Constraints to ML-DL arise when having to deal with a large set of training datasets. This book covers the learning algorithm for floor planning, routing, mask fabrication, and implementation of the computational architecture for ML-DL. The future aspect of the ML-DL algorithm is to be available in the format of an integrated circuit (IC). A user can upgrade to the new algorithm by replacing an IC. This new book mainly deals with the adaption of computation blocks like hardware accelerators and novel nano-material for them based upon their application and to create a smart solution. This exciting new volume is an invaluable reference for beginners as well as engineers, scientists, researchers, and other professionals working in the area of VLSI architecture development. 
650 0 |a Integrated circuits  |x Very large scale integration  |x Design  |x Data processing 
650 0 |a Machine learning 
650 4 |a Apprentissage automatique 
650 4 |a Integrated circuits ; Very large scale integration ; Design ; Data processing 
650 4 |a Machine learning 
700 1 |a Kumar, Abhishek  |e HerausgeberIn  |4 edt 
700 1 |a Tripathi, Suman Lata  |e HerausgeberIn  |4 edt 
700 1 |a Srinivasa Rau, K.  |e HerausgeberIn  |4 edt 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781119910398/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-096168102
_version_ 1818767376900947968
adam_text
any_adam_object
author2 Kumar, Abhishek
Tripathi, Suman Lata
Srinivasa Rau, K.
author2_role edt
edt
edt
author2_variant a k ak
s l t sl slt
r k s rk rks
author_facet Kumar, Abhishek
Tripathi, Suman Lata
Srinivasa Rau, K.
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)096168102
(DE-599)KEP096168102
(ORHE)9781119910398
dewey-full 621.39/5
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.39/5
dewey-search 621.39/5
dewey-sort 3621.39 15
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03626cam a22004692 4500</leader><controlfield tag="001">ZDB-30-ORH-096168102</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230907s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119910497</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-91049-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119910498</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-91049-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119910480</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-119-91048-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111991048X</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-119-91048-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119910398</subfield><subfield code="9">978-1-119-91039-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096168102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP096168102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119910398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096168102</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.39/5</subfield><subfield code="2">23/eng/20230725</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for VLSI chip design</subfield><subfield code="c">edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="a">Beverly, MA</subfield><subfield code="b">Wiley</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="a">Beverly, MA</subfield><subfield code="b">Scrivener Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on August 02, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">MACHINE LEARNING TECHNIQUES FOR VLSI CHIP DESIGN This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, the efficient hardware of machine learning applications with FPGA or CMOS circuits, and many other aspects and applications of machine learning techniques for VLSI chip design. Artificial intelligence (AI) and machine learning (ML) have, or will have, an impact on almost every aspect of our lives and every device that we own. AI has benefitted every industry in terms of computational speeds, accurate decision prediction, efficient machine learning (ML), and deep learning (DL) algorithms. The VLSI industry uses the electronic design automation tool (EDA), and the integration with ML helps in reducing design time and cost of production. Finding defects, bugs, and hardware Trojans in the design with ML or DL can save losses during production. Constraints to ML-DL arise when having to deal with a large set of training datasets. This book covers the learning algorithm for floor planning, routing, mask fabrication, and implementation of the computational architecture for ML-DL. The future aspect of the ML-DL algorithm is to be available in the format of an integrated circuit (IC). A user can upgrade to the new algorithm by replacing an IC. This new book mainly deals with the adaption of computation blocks like hardware accelerators and novel nano-material for them based upon their application and to create a smart solution. This exciting new volume is an invaluable reference for beginners as well as engineers, scientists, researchers, and other professionals working in the area of VLSI architecture development.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integrated circuits</subfield><subfield code="x">Very large scale integration</subfield><subfield code="x">Design</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits ; Very large scale integration ; Design ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Abhishek</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tripathi, Suman Lata</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Srinivasa Rau, K.</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119910398/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-096168102
illustrated Not Illustrated
indexdate 2024-12-18T08:48:54Z
institution BVB
isbn 9781119910497
1119910498
9781119910480
111991048X
9781119910398
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource.
psigel ZDB-30-ORH
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Wiley
Scrivener Publishing
record_format marc
spelling Machine learning for VLSI chip design edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao
Hoboken, NJ Beverly, MA Wiley 2023
Hoboken, NJ Beverly, MA Scrivener Publishing 2023
1 online resource.
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on August 02, 2023)
MACHINE LEARNING TECHNIQUES FOR VLSI CHIP DESIGN This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, the efficient hardware of machine learning applications with FPGA or CMOS circuits, and many other aspects and applications of machine learning techniques for VLSI chip design. Artificial intelligence (AI) and machine learning (ML) have, or will have, an impact on almost every aspect of our lives and every device that we own. AI has benefitted every industry in terms of computational speeds, accurate decision prediction, efficient machine learning (ML), and deep learning (DL) algorithms. The VLSI industry uses the electronic design automation tool (EDA), and the integration with ML helps in reducing design time and cost of production. Finding defects, bugs, and hardware Trojans in the design with ML or DL can save losses during production. Constraints to ML-DL arise when having to deal with a large set of training datasets. This book covers the learning algorithm for floor planning, routing, mask fabrication, and implementation of the computational architecture for ML-DL. The future aspect of the ML-DL algorithm is to be available in the format of an integrated circuit (IC). A user can upgrade to the new algorithm by replacing an IC. This new book mainly deals with the adaption of computation blocks like hardware accelerators and novel nano-material for them based upon their application and to create a smart solution. This exciting new volume is an invaluable reference for beginners as well as engineers, scientists, researchers, and other professionals working in the area of VLSI architecture development.
Integrated circuits Very large scale integration Design Data processing
Machine learning
Apprentissage automatique
Integrated circuits ; Very large scale integration ; Design ; Data processing
Kumar, Abhishek HerausgeberIn edt
Tripathi, Suman Lata HerausgeberIn edt
Srinivasa Rau, K. HerausgeberIn edt
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781119910398/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Machine learning for VLSI chip design
Integrated circuits Very large scale integration Design Data processing
Machine learning
Apprentissage automatique
Integrated circuits ; Very large scale integration ; Design ; Data processing
title Machine learning for VLSI chip design
title_auth Machine learning for VLSI chip design
title_exact_search Machine learning for VLSI chip design
title_full Machine learning for VLSI chip design edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao
title_fullStr Machine learning for VLSI chip design edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao
title_full_unstemmed Machine learning for VLSI chip design edited by Abhishek Kumar, Suman Lata Tripathi and K. Srinivasa Rao
title_short Machine learning for VLSI chip design
title_sort machine learning for vlsi chip design
topic Integrated circuits Very large scale integration Design Data processing
Machine learning
Apprentissage automatique
Integrated circuits ; Very large scale integration ; Design ; Data processing
topic_facet Integrated circuits Very large scale integration Design Data processing
Machine learning
Apprentissage automatique
Integrated circuits ; Very large scale integration ; Design ; Data processing
url https://learning.oreilly.com/library/view/-/9781119910398/?ar
work_keys_str_mv AT kumarabhishek machinelearningforvlsichipdesign
AT tripathisumanlata machinelearningforvlsichipdesign
AT srinivasarauk machinelearningforvlsichipdesign