Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robus...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2023
|
Ausgabe: | 1st edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-094103259 | ||
003 | DE-627-1 | ||
005 | 20240228122021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230802s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781803237251 |9 978-1-80323-725-1 | ||
020 | |a 1803237252 |9 1-80323-725-2 | ||
035 | |a (DE-627-1)094103259 | ||
035 | |a (DE-599)KEP094103259 | ||
035 | |a (ORHE)9781803246888 | ||
035 | |a (DE-627-1)094103259 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 |2 23 | |
100 | 1 | |a Benatan, Matt |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Enhancing Deep Learning with Bayesian Inference |b Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python |c Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider |
250 | |a 1st edition. | ||
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2023 | |
300 | |a 1 online resource (386 p.) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Description based upon print version of record | ||
520 | |a Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. | ||
650 | 0 | |a Deep learning (Machine learning) |x Mathematical models | |
650 | 0 | |a Neural networks (Computer science) |x Mathematical models | |
650 | 0 | |a Bayesian field theory | |
650 | 4 | |a Apprentissage profond ; Modèles mathématiques | |
650 | 4 | |a Réseaux neuronaux (Informatique) ; Modèles mathématiques | |
650 | 4 | |a Théorie des champs bayésienne | |
650 | 4 | |a Bayesian field theory | |
650 | 4 | |a Neural networks (Computer science) ; Mathematical models | |
700 | 1 | |a Gietema, Jochem |e MitwirkendeR |4 ctb | |
700 | 1 | |a Schneider, Marian |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781803246888 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781803246888 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781803246888/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-094103259 |
---|---|
_version_ | 1818767377714642944 |
adam_text | |
any_adam_object | |
author | Benatan, Matt |
author2 | Gietema, Jochem Schneider, Marian |
author2_role | ctb ctb |
author2_variant | j g jg m s ms |
author_facet | Benatan, Matt Gietema, Jochem Schneider, Marian |
author_role | aut |
author_sort | Benatan, Matt |
author_variant | m b mb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)094103259 (DE-599)KEP094103259 (ORHE)9781803246888 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04281cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-094103259</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230802s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803237251</subfield><subfield code="9">978-1-80323-725-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1803237252</subfield><subfield code="9">1-80323-725-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094103259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP094103259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781803246888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094103259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benatan, Matt</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Deep Learning with Bayesian Inference</subfield><subfield code="b">Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python</subfield><subfield code="c">Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (386 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Deep learning (Machine learning)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage profond ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique) ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des champs bayésienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science) ; Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gietema, Jochem</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Marian</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781803246888</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781803246888</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781803246888/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-094103259 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:55Z |
institution | BVB |
isbn | 9781803237251 1803237252 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (386 p.) |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Benatan, Matt VerfasserIn aut Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider 1st edition. Birmingham Packt Publishing, Limited 2023 1 online resource (386 p.) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Description based upon print version of record Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. Deep learning (Machine learning) Mathematical models Neural networks (Computer science) Mathematical models Bayesian field theory Apprentissage profond ; Modèles mathématiques Réseaux neuronaux (Informatique) ; Modèles mathématiques Théorie des champs bayésienne Neural networks (Computer science) ; Mathematical models Gietema, Jochem MitwirkendeR ctb Schneider, Marian MitwirkendeR ctb 9781803246888 Erscheint auch als Druck-Ausgabe 9781803246888 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781803246888/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Benatan, Matt Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Deep learning (Machine learning) Mathematical models Neural networks (Computer science) Mathematical models Bayesian field theory Apprentissage profond ; Modèles mathématiques Réseaux neuronaux (Informatique) ; Modèles mathématiques Théorie des champs bayésienne Neural networks (Computer science) ; Mathematical models |
title | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python |
title_auth | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python |
title_exact_search | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python |
title_full | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider |
title_fullStr | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider |
title_full_unstemmed | Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider |
title_short | Enhancing Deep Learning with Bayesian Inference |
title_sort | enhancing deep learning with bayesian inference create more powerful robust deep learning systems with bayesian deep learning in python |
title_sub | Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python |
topic | Deep learning (Machine learning) Mathematical models Neural networks (Computer science) Mathematical models Bayesian field theory Apprentissage profond ; Modèles mathématiques Réseaux neuronaux (Informatique) ; Modèles mathématiques Théorie des champs bayésienne Neural networks (Computer science) ; Mathematical models |
topic_facet | Deep learning (Machine learning) Mathematical models Neural networks (Computer science) Mathematical models Bayesian field theory Apprentissage profond ; Modèles mathématiques Réseaux neuronaux (Informatique) ; Modèles mathématiques Théorie des champs bayésienne Neural networks (Computer science) ; Mathematical models |
url | https://learning.oreilly.com/library/view/-/9781803246888/?ar |
work_keys_str_mv | AT benatanmatt enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython AT gietemajochem enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython AT schneidermarian enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython |