Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python

Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Benatan, Matt (VerfasserIn)
Weitere Verfasser: Gietema, Jochem (MitwirkendeR), Schneider, Marian (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing, Limited 2023
Ausgabe:1st edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-094103259
003 DE-627-1
005 20240228122021.0
007 cr uuu---uuuuu
008 230802s2023 xx |||||o 00| ||eng c
020 |a 9781803237251  |9 978-1-80323-725-1 
020 |a 1803237252  |9 1-80323-725-2 
035 |a (DE-627-1)094103259 
035 |a (DE-599)KEP094103259 
035 |a (ORHE)9781803246888 
035 |a (DE-627-1)094103259 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.31  |2 23 
100 1 |a Benatan, Matt  |e VerfasserIn  |4 aut 
245 1 0 |a Enhancing Deep Learning with Bayesian Inference  |b Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python  |c Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider 
250 |a 1st edition. 
264 1 |a Birmingham  |b Packt Publishing, Limited  |c 2023 
300 |a 1 online resource (386 p.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record 
520 |a Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. 
650 0 |a Deep learning (Machine learning)  |x Mathematical models 
650 0 |a Neural networks (Computer science)  |x Mathematical models 
650 0 |a Bayesian field theory 
650 4 |a Apprentissage profond ; Modèles mathématiques 
650 4 |a Réseaux neuronaux (Informatique) ; Modèles mathématiques 
650 4 |a Théorie des champs bayésienne 
650 4 |a Bayesian field theory 
650 4 |a Neural networks (Computer science) ; Mathematical models 
700 1 |a Gietema, Jochem  |e MitwirkendeR  |4 ctb 
700 1 |a Schneider, Marian  |e MitwirkendeR  |4 ctb 
776 1 |z 9781803246888 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781803246888 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781803246888/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-094103259
_version_ 1818767377714642944
adam_text
any_adam_object
author Benatan, Matt
author2 Gietema, Jochem
Schneider, Marian
author2_role ctb
ctb
author2_variant j g jg
m s ms
author_facet Benatan, Matt
Gietema, Jochem
Schneider, Marian
author_role aut
author_sort Benatan, Matt
author_variant m b mb
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)094103259
(DE-599)KEP094103259
(ORHE)9781803246888
dewey-full 006.31
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.31
dewey-search 006.31
dewey-sort 16.31
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition 1st edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04281cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-094103259</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230802s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803237251</subfield><subfield code="9">978-1-80323-725-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1803237252</subfield><subfield code="9">1-80323-725-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094103259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP094103259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781803246888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094103259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benatan, Matt</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Deep Learning with Bayesian Inference</subfield><subfield code="b">Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python</subfield><subfield code="c">Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (386 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Deep learning (Machine learning)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage profond ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique) ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des champs bayésienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science) ; Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gietema, Jochem</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Marian</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781803246888</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781803246888</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781803246888/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-094103259
illustrated Not Illustrated
indexdate 2024-12-18T08:48:55Z
institution BVB
isbn 9781803237251
1803237252
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (386 p.)
psigel ZDB-30-ORH
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Packt Publishing, Limited
record_format marc
spelling Benatan, Matt VerfasserIn aut
Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider
1st edition.
Birmingham Packt Publishing, Limited 2023
1 online resource (386 p.)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Description based upon print version of record
Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.
Deep learning (Machine learning) Mathematical models
Neural networks (Computer science) Mathematical models
Bayesian field theory
Apprentissage profond ; Modèles mathématiques
Réseaux neuronaux (Informatique) ; Modèles mathématiques
Théorie des champs bayésienne
Neural networks (Computer science) ; Mathematical models
Gietema, Jochem MitwirkendeR ctb
Schneider, Marian MitwirkendeR ctb
9781803246888
Erscheint auch als Druck-Ausgabe 9781803246888
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781803246888/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Benatan, Matt
Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
Deep learning (Machine learning) Mathematical models
Neural networks (Computer science) Mathematical models
Bayesian field theory
Apprentissage profond ; Modèles mathématiques
Réseaux neuronaux (Informatique) ; Modèles mathématiques
Théorie des champs bayésienne
Neural networks (Computer science) ; Mathematical models
title Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
title_auth Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
title_exact_search Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
title_full Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider
title_fullStr Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider
title_full_unstemmed Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider
title_short Enhancing Deep Learning with Bayesian Inference
title_sort enhancing deep learning with bayesian inference create more powerful robust deep learning systems with bayesian deep learning in python
title_sub Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python
topic Deep learning (Machine learning) Mathematical models
Neural networks (Computer science) Mathematical models
Bayesian field theory
Apprentissage profond ; Modèles mathématiques
Réseaux neuronaux (Informatique) ; Modèles mathématiques
Théorie des champs bayésienne
Neural networks (Computer science) ; Mathematical models
topic_facet Deep learning (Machine learning) Mathematical models
Neural networks (Computer science) Mathematical models
Bayesian field theory
Apprentissage profond ; Modèles mathématiques
Réseaux neuronaux (Informatique) ; Modèles mathématiques
Théorie des champs bayésienne
Neural networks (Computer science) ; Mathematical models
url https://learning.oreilly.com/library/view/-/9781803246888/?ar
work_keys_str_mv AT benatanmatt enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython
AT gietemajochem enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython
AT schneidermarian enhancingdeeplearningwithbayesianinferencecreatemorepowerfulrobustdeeplearningsystemswithbayesiandeeplearninginpython