Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases

In today's fast-paced, ever-growing digital world, you face various new and complex business problems. To help resolve these problems, enterprises are embedding artificial intelligence (AI) into their mission-critical business processes and applications to help improve operations, optimize perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manna, Makenzie (VerfasserIn), Mengusoglu, Erhan (VerfasserIn), Minin, Artem (VerfasserIn), Rekapalli, Krishna Teja (VerfasserIn), Rüter, Thomas (VerfasserIn), Velazco, Pia (VerfasserIn), Wolff, Markus (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Redmond, Washington] IBM 2022
Ausgabe:[First edition].
Schriftenreihe:IBM redbooks
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-094101086
003 DE-627-1
005 20240228121843.0
007 cr uuu---uuuuu
008 230802s2022 xx |||||o 00| ||eng c
020 |a 9780738460925  |c electronic bk.  |9 978-0-7384-6092-5 
020 |a 0738460923  |c electronic bk.  |9 0-7384-6092-3 
035 |a (DE-627-1)094101086 
035 |a (DE-599)KEP094101086 
035 |a (ORHE)9780738460925 
035 |a (DE-627-1)094101086 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3  |2 23/eng/20221122 
100 1 |a Manna, Makenzie  |e VerfasserIn  |4 aut 
245 1 0 |a Optimized inferencing and integration with AI on IBM zSystems  |b introduction, methodology, and use cases  |c Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff 
250 |a [First edition]. 
264 1 |a [Redmond, Washington]  |b IBM  |c 2022 
300 |a 1 online resource (128 pages) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a IBM redbooks 
520 |a In today's fast-paced, ever-growing digital world, you face various new and complex business problems. To help resolve these problems, enterprises are embedding artificial intelligence (AI) into their mission-critical business processes and applications to help improve operations, optimize performance, personalize the user experience, and differentiate themselves from the competition. Furthermore, the use of AI on the IBM℗ʼ zSystems platform, where your mission-critical transactions, data, and applications are installed, is a key aspect of modernizing business-critical applications while maintaining strict service-level agreements (SLAs) and security requirements. This colocation of data and AI empowers your enterprise to optimally and easily deploy and infuse AI capabilities into your enterprise workloads with the most recent and relevant data available in real time, which enables a more transparent, accurate, and dependable AI experience. This IBM Redpaper publication introduces and explains AI technologies and hardware optimizations, such as IBM zSystems Integrated Accelerator for AI, and demonstrates how to leverage certain capabilities and components to enable solutions in business-critical use cases, such as fraud detection and credit risk scoring on the platform. Real-time inferencing with AI models, a capability that is critical to certain industries and use cases such as fraud detection, now can be implemented with optimized performance thanks to innovations like IBM zSystems Integrated Accelerator for AI embedded in the Telum chip within IBM z16⁴́Ø. This publication also describes and demonstrates the implementation and integration of the two end-to-end solutions (fraud detection and credit risk), from developing and training the AI models to deploying the models in an IBM z/OS℗ʼ V2R5 environment on IBM z16 hardware, and to integrating AI functions into an application, for example an IBM z/OS Customer Information Control System (IBM CICS℗ʼ) application. We describe performance optimization recommendations and considerations when leveraging AI technology on the IBM zSystems platform, including optimizations for micro-batching in IBM Watson℗ʼ Machine Learning for z/OS (WMLz). The benefits that are derived from the solutions also are described in detail, which includes how the open-source AI framework portability of the IBM zSystems platform enables model development and training to be done anywhere, including on IBM zSystems, and the ability to easily integrate to deploy on IBM zSystems for optimal inferencing. You can uncover insights at the transaction level while taking advantage of the speed, depth, and securability of the platform. This publication is intended for technical specialists, site reliability engineers, architects, system programmers, and systems engineers. Technologies that are covered include TensorFlow Serving, WMLz, IBM Cloud Pak℗ʼ for Data (CP4D), IBM z/OS Container Extensions (zCX), IBM Customer Information Control System (IBM CICS), Open Neural Network Exchange (ONNX), and IBM Deep Learning Compiler (zDLC). 
630 2 0 |a IBM Power systems 
650 0 |a Artificial intelligence 
650 4 |a IBM Power systems 
650 4 |a Intelligence artificielle 
650 4 |a artificial intelligence 
650 4 |a Artificial intelligence 
700 1 |a Mengusoglu, Erhan  |e VerfasserIn  |4 aut 
700 1 |a Minin, Artem  |e VerfasserIn  |4 aut 
700 1 |a Rekapalli, Krishna Teja  |e VerfasserIn  |4 aut 
700 1 |a Rüter, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Velazco, Pia  |e VerfasserIn  |4 aut 
700 1 |a Wolff, Markus  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9780738460925/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-094101086
_version_ 1818767378285068288
adam_text
any_adam_object
author Manna, Makenzie
Mengusoglu, Erhan
Minin, Artem
Rekapalli, Krishna Teja
Rüter, Thomas
Velazco, Pia
Wolff, Markus
author_facet Manna, Makenzie
Mengusoglu, Erhan
Minin, Artem
Rekapalli, Krishna Teja
Rüter, Thomas
Velazco, Pia
Wolff, Markus
author_role aut
aut
aut
aut
aut
aut
aut
author_sort Manna, Makenzie
author_variant m m mm
e m em
a m am
k t r kt ktr
t r tr
p v pv
m w mw
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)094101086
(DE-599)KEP094101086
(ORHE)9780738460925
dewey-full 006.3
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3
dewey-search 006.3
dewey-sort 16.3
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition [First edition].
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04940cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-094101086</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121843.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230802s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780738460925</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-7384-6092-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0738460923</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-7384-6092-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094101086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP094101086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780738460925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)094101086</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20221122</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manna, Makenzie</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized inferencing and integration with AI on IBM zSystems</subfield><subfield code="b">introduction, methodology, and use cases</subfield><subfield code="c">Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Redmond, Washington]</subfield><subfield code="b">IBM</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (128 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IBM redbooks</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In today's fast-paced, ever-growing digital world, you face various new and complex business problems. To help resolve these problems, enterprises are embedding artificial intelligence (AI) into their mission-critical business processes and applications to help improve operations, optimize performance, personalize the user experience, and differentiate themselves from the competition. Furthermore, the use of AI on the IBM℗ʼ zSystems platform, where your mission-critical transactions, data, and applications are installed, is a key aspect of modernizing business-critical applications while maintaining strict service-level agreements (SLAs) and security requirements. This colocation of data and AI empowers your enterprise to optimally and easily deploy and infuse AI capabilities into your enterprise workloads with the most recent and relevant data available in real time, which enables a more transparent, accurate, and dependable AI experience. This IBM Redpaper publication introduces and explains AI technologies and hardware optimizations, such as IBM zSystems Integrated Accelerator for AI, and demonstrates how to leverage certain capabilities and components to enable solutions in business-critical use cases, such as fraud detection and credit risk scoring on the platform. Real-time inferencing with AI models, a capability that is critical to certain industries and use cases such as fraud detection, now can be implemented with optimized performance thanks to innovations like IBM zSystems Integrated Accelerator for AI embedded in the Telum chip within IBM z16⁴́Ø. This publication also describes and demonstrates the implementation and integration of the two end-to-end solutions (fraud detection and credit risk), from developing and training the AI models to deploying the models in an IBM z/OS℗ʼ V2R5 environment on IBM z16 hardware, and to integrating AI functions into an application, for example an IBM z/OS Customer Information Control System (IBM CICS℗ʼ) application. We describe performance optimization recommendations and considerations when leveraging AI technology on the IBM zSystems platform, including optimizations for micro-batching in IBM Watson℗ʼ Machine Learning for z/OS (WMLz). The benefits that are derived from the solutions also are described in detail, which includes how the open-source AI framework portability of the IBM zSystems platform enables model development and training to be done anywhere, including on IBM zSystems, and the ability to easily integrate to deploy on IBM zSystems for optimal inferencing. You can uncover insights at the transaction level while taking advantage of the speed, depth, and securability of the platform. This publication is intended for technical specialists, site reliability engineers, architects, system programmers, and systems engineers. Technologies that are covered include TensorFlow Serving, WMLz, IBM Cloud Pak℗ʼ for Data (CP4D), IBM z/OS Container Extensions (zCX), IBM Customer Information Control System (IBM CICS), Open Neural Network Exchange (ONNX), and IBM Deep Learning Compiler (zDLC).</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">IBM Power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IBM Power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mengusoglu, Erhan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minin, Artem</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rekapalli, Krishna Teja</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rüter, Thomas</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velazco, Pia</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolff, Markus</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780738460925/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-094101086
illustrated Not Illustrated
indexdate 2024-12-18T08:48:56Z
institution BVB
isbn 9780738460925
0738460923
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (128 pages)
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher IBM
record_format marc
series2 IBM redbooks
spelling Manna, Makenzie VerfasserIn aut
Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff
[First edition].
[Redmond, Washington] IBM 2022
1 online resource (128 pages)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
IBM redbooks
In today's fast-paced, ever-growing digital world, you face various new and complex business problems. To help resolve these problems, enterprises are embedding artificial intelligence (AI) into their mission-critical business processes and applications to help improve operations, optimize performance, personalize the user experience, and differentiate themselves from the competition. Furthermore, the use of AI on the IBM℗ʼ zSystems platform, where your mission-critical transactions, data, and applications are installed, is a key aspect of modernizing business-critical applications while maintaining strict service-level agreements (SLAs) and security requirements. This colocation of data and AI empowers your enterprise to optimally and easily deploy and infuse AI capabilities into your enterprise workloads with the most recent and relevant data available in real time, which enables a more transparent, accurate, and dependable AI experience. This IBM Redpaper publication introduces and explains AI technologies and hardware optimizations, such as IBM zSystems Integrated Accelerator for AI, and demonstrates how to leverage certain capabilities and components to enable solutions in business-critical use cases, such as fraud detection and credit risk scoring on the platform. Real-time inferencing with AI models, a capability that is critical to certain industries and use cases such as fraud detection, now can be implemented with optimized performance thanks to innovations like IBM zSystems Integrated Accelerator for AI embedded in the Telum chip within IBM z16⁴́Ø. This publication also describes and demonstrates the implementation and integration of the two end-to-end solutions (fraud detection and credit risk), from developing and training the AI models to deploying the models in an IBM z/OS℗ʼ V2R5 environment on IBM z16 hardware, and to integrating AI functions into an application, for example an IBM z/OS Customer Information Control System (IBM CICS℗ʼ) application. We describe performance optimization recommendations and considerations when leveraging AI technology on the IBM zSystems platform, including optimizations for micro-batching in IBM Watson℗ʼ Machine Learning for z/OS (WMLz). The benefits that are derived from the solutions also are described in detail, which includes how the open-source AI framework portability of the IBM zSystems platform enables model development and training to be done anywhere, including on IBM zSystems, and the ability to easily integrate to deploy on IBM zSystems for optimal inferencing. You can uncover insights at the transaction level while taking advantage of the speed, depth, and securability of the platform. This publication is intended for technical specialists, site reliability engineers, architects, system programmers, and systems engineers. Technologies that are covered include TensorFlow Serving, WMLz, IBM Cloud Pak℗ʼ for Data (CP4D), IBM z/OS Container Extensions (zCX), IBM Customer Information Control System (IBM CICS), Open Neural Network Exchange (ONNX), and IBM Deep Learning Compiler (zDLC).
IBM Power systems
Artificial intelligence
Intelligence artificielle
artificial intelligence
Mengusoglu, Erhan VerfasserIn aut
Minin, Artem VerfasserIn aut
Rekapalli, Krishna Teja VerfasserIn aut
Rüter, Thomas VerfasserIn aut
Velazco, Pia VerfasserIn aut
Wolff, Markus VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780738460925/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Manna, Makenzie
Mengusoglu, Erhan
Minin, Artem
Rekapalli, Krishna Teja
Rüter, Thomas
Velazco, Pia
Wolff, Markus
Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases
IBM Power systems
Artificial intelligence
Intelligence artificielle
artificial intelligence
title Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases
title_auth Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases
title_exact_search Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases
title_full Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff
title_fullStr Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff
title_full_unstemmed Optimized inferencing and integration with AI on IBM zSystems introduction, methodology, and use cases Makenzie Manna, Erhan Mengusoglu, Artem Minin, Krishna Teja Rekapalli, Thomas Rüter, Pia Velazco, Markus Wolff
title_short Optimized inferencing and integration with AI on IBM zSystems
title_sort optimized inferencing and integration with ai on ibm zsystems introduction methodology and use cases
title_sub introduction, methodology, and use cases
topic IBM Power systems
Artificial intelligence
Intelligence artificielle
artificial intelligence
topic_facet IBM Power systems
Artificial intelligence
Intelligence artificielle
artificial intelligence
url https://learning.oreilly.com/library/view/-/9780738460925/?ar
work_keys_str_mv AT mannamakenzie optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT mengusogluerhan optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT mininartem optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT rekapallikrishnateja optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT ruterthomas optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT velazcopia optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases
AT wolffmarkus optimizedinferencingandintegrationwithaionibmzsystemsintroductionmethodologyandusecases