Privacy-preserving machine learning

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang, J. Morris (VerfasserIn), Zhuang, Di (VerfasserIn), Samaraweera, Dumindu (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Shelter Island Manning Publications 2022
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-092807852
003 DE-627-1
005 20240228121956.0
007 cr uuu---uuuuu
008 230530s2022 xx |||||o 00| ||eng c
020 |a 9781617298042  |c electronic bk.  |9 978-1-61729-804-2 
020 |a 1617298042  |c electronic bk.  |9 1-61729-804-2 
035 |a (DE-627-1)092807852 
035 |a (DE-599)KEP092807852 
035 |a (ORHE)9781617298042 
035 |a (DE-627-1)092807852 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23/eng/20230509 
100 1 |a Chang, J. Morris  |e VerfasserIn  |4 aut 
245 1 0 |a Privacy-preserving machine learning  |c J. Morris Chang, Di Zhuang, Dumindu Samaraweera 
264 1 |a Shelter Island  |b Manning Publications  |c 2022 
300 |a 1 online resource (1 volume)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Description based on print version record 
520 |a Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. About the Technology Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end. About the Book Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter. What's Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Authors J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. G. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Quotes A detailed treatment of differential privacy, synthetic data generation, and privacy-preserving machine-learning techniques with relevant Python examples. Highly recommended! - Abe Taha, Google A wonderful synthesis of theoretical and practical. This book fills a real need. - Stephen Oates, Allianz The definitive source for creating privacy-respecting machine learning systems. This area in data-rich environments is so important to understand! - Mac Chambers, Roy Hobbs Diamond Enterprises Covers all aspects for data privacy, with good practical examples. - Vidhya Vinay, Streamingo Solutions. 
650 0 |a Machine learning 
650 0 |a Computer networks  |x Security measures 
650 4 |a Apprentissage automatique 
650 4 |a Réseaux d'ordinateurs ; Sécurité ; Mesures 
650 4 |a Computer networks ; Security measures 
650 4 |a Machine learning 
700 1 |a Zhuang, Di  |e VerfasserIn  |4 aut 
700 1 |a Samaraweera, Dumindu  |e VerfasserIn  |4 aut 
776 1 |z 9781617298042 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781617298042 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781617298042/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-092807852
_version_ 1818767380573061120
adam_text
any_adam_object
author Chang, J. Morris
Zhuang, Di
Samaraweera, Dumindu
author_facet Chang, J. Morris
Zhuang, Di
Samaraweera, Dumindu
author_role aut
aut
aut
author_sort Chang, J. Morris
author_variant j m c jm jmc
d z dz
d s ds
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)092807852
(DE-599)KEP092807852
(ORHE)9781617298042
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04960cam a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-092807852</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230530s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781617298042</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-61729-804-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1617298042</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-61729-804-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)092807852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP092807852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781617298042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)092807852</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20230509</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, J. Morris</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Privacy-preserving machine learning</subfield><subfield code="c">J. Morris Chang, Di Zhuang, Dumindu Samaraweera</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island</subfield><subfield code="b">Manning Publications</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. About the Technology Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end. About the Book Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter. What's Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Authors J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. G. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Quotes A detailed treatment of differential privacy, synthetic data generation, and privacy-preserving machine-learning techniques with relevant Python examples. Highly recommended! - Abe Taha, Google A wonderful synthesis of theoretical and practical. This book fills a real need. - Stephen Oates, Allianz The definitive source for creating privacy-respecting machine learning systems. This area in data-rich environments is so important to understand! - Mac Chambers, Roy Hobbs Diamond Enterprises Covers all aspects for data privacy, with good practical examples. - Vidhya Vinay, Streamingo Solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer networks</subfield><subfield code="x">Security measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux d'ordinateurs ; Sécurité ; Mesures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer networks ; Security measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhuang, Di</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samaraweera, Dumindu</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781617298042</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781617298042</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781617298042/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-092807852
illustrated Illustrated
indexdate 2024-12-18T08:48:58Z
institution BVB
isbn 9781617298042
1617298042
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 volume) illustrations
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Manning Publications
record_format marc
spelling Chang, J. Morris VerfasserIn aut
Privacy-preserving machine learning J. Morris Chang, Di Zhuang, Dumindu Samaraweera
Shelter Island Manning Publications 2022
1 online resource (1 volume) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Description based on print version record
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. About the Technology Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end. About the Book Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter. What's Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Authors J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. G. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Quotes A detailed treatment of differential privacy, synthetic data generation, and privacy-preserving machine-learning techniques with relevant Python examples. Highly recommended! - Abe Taha, Google A wonderful synthesis of theoretical and practical. This book fills a real need. - Stephen Oates, Allianz The definitive source for creating privacy-respecting machine learning systems. This area in data-rich environments is so important to understand! - Mac Chambers, Roy Hobbs Diamond Enterprises Covers all aspects for data privacy, with good practical examples. - Vidhya Vinay, Streamingo Solutions.
Machine learning
Computer networks Security measures
Apprentissage automatique
Réseaux d'ordinateurs ; Sécurité ; Mesures
Computer networks ; Security measures
Zhuang, Di VerfasserIn aut
Samaraweera, Dumindu VerfasserIn aut
9781617298042
Erscheint auch als Druck-Ausgabe 9781617298042
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781617298042/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Chang, J. Morris
Zhuang, Di
Samaraweera, Dumindu
Privacy-preserving machine learning
Machine learning
Computer networks Security measures
Apprentissage automatique
Réseaux d'ordinateurs ; Sécurité ; Mesures
Computer networks ; Security measures
title Privacy-preserving machine learning
title_auth Privacy-preserving machine learning
title_exact_search Privacy-preserving machine learning
title_full Privacy-preserving machine learning J. Morris Chang, Di Zhuang, Dumindu Samaraweera
title_fullStr Privacy-preserving machine learning J. Morris Chang, Di Zhuang, Dumindu Samaraweera
title_full_unstemmed Privacy-preserving machine learning J. Morris Chang, Di Zhuang, Dumindu Samaraweera
title_short Privacy-preserving machine learning
title_sort privacy preserving machine learning
topic Machine learning
Computer networks Security measures
Apprentissage automatique
Réseaux d'ordinateurs ; Sécurité ; Mesures
Computer networks ; Security measures
topic_facet Machine learning
Computer networks Security measures
Apprentissage automatique
Réseaux d'ordinateurs ; Sécurité ; Mesures
Computer networks ; Security measures
url https://learning.oreilly.com/library/view/-/9781617298042/?ar
work_keys_str_mv AT changjmorris privacypreservingmachinelearning
AT zhuangdi privacypreservingmachinelearning
AT samaraweeradumindu privacypreservingmachinelearning