Google professional machine learning engineer course 2023
Google Professional Machine Learning Engineer Course 2023 (Rough Draft) Certification Exam Guide Welcome to the Google Professional Machine Learning Engineer Course! This course is designed to help you prepare for the Google Professional Machine Learning Engineer certification exam. Learning Objecti...
Gespeichert in:
Format: | Elektronisch Video |
---|---|
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified]
Pragmatic AI Solutions
[2023]
|
Ausgabe: | [First edition]. |
Schriftenreihe: | Rough draft
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-092524532 | ||
003 | DE-627-1 | ||
005 | 20240228121947.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2023 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)092524532 | ||
035 | |a (DE-599)KEP092524532 | ||
035 | |a (ORHE)03212023VIDEOPAIML | ||
035 | |a (DE-627-1)092524532 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 004.67/82 |2 23/eng/20230411 | |
245 | 1 | 0 | |a Google professional machine learning engineer course 2023 |
250 | |a [First edition]. | ||
264 | 1 | |a [Place of publication not identified] |b Pragmatic AI Solutions |c [2023] | |
300 | |a 1 online resource (1 video file (1 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Rough draft | |
500 | |a Online resource; title from title details screen (O'Reilly, viewed April 11, 2023) | ||
520 | |a Google Professional Machine Learning Engineer Course 2023 (Rough Draft) Certification Exam Guide Welcome to the Google Professional Machine Learning Engineer Course! This course is designed to help you prepare for the Google Professional Machine Learning Engineer certification exam. Learning Objectives Develop a deep understanding of Google Cloud technologies and various ML models and techniques to design, build, and productionize machine learning solutions that address specific business challenges while adhering to responsible AI practices. Collaborate effectively with cross-functional teams, including application developers, data engineers, and data governance professionals, to ensure the long-term success of ML models throughout their development, deployment, and maintenance. Master the skills required to design, implement, and manage ML architectures, data pipelines, and metric interpretations, as well as optimize model performance through training, retraining, deploying, scheduling, monitoring, and refining models in scalable and efficient ways. Learn how to use the Google Cloud Platform (GCP) to build and deploy ML models, including how to use GCP services such as BigQuery, Cloud Storage, Cloud AI Platform, and Cloud Functions to build and deploy ML models. Who Should Take This Course? Data scientists Data engineers Machine learning engineers Software engineers Data analysts Data architects Business analysts Anyone interested in learning about machine learning and Google Cloud Platform Course One: Framing ML Problems Course Two: Architecting ML solutions Course Three: Designing data preparation and processing systems Course Four: Developing ML models Course Five: Automating and orchestrating ML pipelines Course Six: Monitoring, optimizing, and maintaining ML solutions Additional Popular Resources Pytest Master Class AWS Solutions Architect Professional Course Github Actions and GitOps in One Hour Video Course Jenkins CI/CD and Github in One Hour Video Course AWS Certified Cloud Practitioner Video Course Advanced Testing with Pytest Video Course AWS Solutions Architect Certification In ONE HOUR Python for DevOps Master Class 2022: CI/CD, Github Actions, Containers, and Microservices MLOPs Foundations: Chapter 2 Walkthrough of Practical MLOps Learn Docker containers in One Hour Video Course Introduction to MLOps Walkthrough AZ-900 (Azure Fundamentals) Quick reference guide 52 Weeks of AWS Episode 8: Infrastructure as Code with CDK and AWS Lambda Learn GCP Cloud Functions in One Hour Video Course Python Devops in TWO HOURS! MLOps Platforms From Zero: DatMLOps Platforms From Zero: Databricks, MLFlow/MLRun/SKLearn AWS Machine Learning Certification In ONE HOUR Fast, documented Machine Learning APIs with FastAPI Zero to One: AWS Lambda with SAM and Python in One Hour AWS Storage Solutions 2022: EBS/S3/EFS/Glacier Python Bootcamp for Data Testing In Python book Minimal Python book Practical MLOps book Python for DevOps-Playlist. | ||
650 | 0 | |a Cloud computing |v Study guides |x Examinations | |
650 | 0 | |a Computing platforms |v Study guides |x Examinations | |
650 | 0 | |a Computer engineers |x Certification | |
650 | 4 | |a Infonuagique ; Examens ; Guides de l'étudiant | |
650 | 4 | |a Plateformes (Informatique) ; Examens ; Guides de l'étudiant | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Study guides | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
700 | 1 | |a Gift, Noah |e PräsentatorIn |4 pre | |
710 | 2 | |a Pragmatic AI Solutions (Firm), |e Verlag |4 pbl | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/03212023VIDEOPAIML/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-092524532 |
---|---|
_version_ | 1818767381009268736 |
adam_text | |
any_adam_object | |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)092524532 (DE-599)KEP092524532 (ORHE)03212023VIDEOPAIML |
dewey-full | 004.67/82 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.67/82 |
dewey-search | 004.67/82 |
dewey-sort | 14.67 282 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04972cgm a22005532 4500</leader><controlfield tag="001">ZDB-30-ORH-092524532</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121947.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2023 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)092524532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP092524532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)03212023VIDEOPAIML</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)092524532</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.67/82</subfield><subfield code="2">23/eng/20230411</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Google professional machine learning engineer course 2023</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Pragmatic AI Solutions</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (1 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Rough draft</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed April 11, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Google Professional Machine Learning Engineer Course 2023 (Rough Draft) Certification Exam Guide Welcome to the Google Professional Machine Learning Engineer Course! This course is designed to help you prepare for the Google Professional Machine Learning Engineer certification exam. Learning Objectives Develop a deep understanding of Google Cloud technologies and various ML models and techniques to design, build, and productionize machine learning solutions that address specific business challenges while adhering to responsible AI practices. Collaborate effectively with cross-functional teams, including application developers, data engineers, and data governance professionals, to ensure the long-term success of ML models throughout their development, deployment, and maintenance. Master the skills required to design, implement, and manage ML architectures, data pipelines, and metric interpretations, as well as optimize model performance through training, retraining, deploying, scheduling, monitoring, and refining models in scalable and efficient ways. Learn how to use the Google Cloud Platform (GCP) to build and deploy ML models, including how to use GCP services such as BigQuery, Cloud Storage, Cloud AI Platform, and Cloud Functions to build and deploy ML models. Who Should Take This Course? Data scientists Data engineers Machine learning engineers Software engineers Data analysts Data architects Business analysts Anyone interested in learning about machine learning and Google Cloud Platform Course One: Framing ML Problems Course Two: Architecting ML solutions Course Three: Designing data preparation and processing systems Course Four: Developing ML models Course Five: Automating and orchestrating ML pipelines Course Six: Monitoring, optimizing, and maintaining ML solutions Additional Popular Resources Pytest Master Class AWS Solutions Architect Professional Course Github Actions and GitOps in One Hour Video Course Jenkins CI/CD and Github in One Hour Video Course AWS Certified Cloud Practitioner Video Course Advanced Testing with Pytest Video Course AWS Solutions Architect Certification In ONE HOUR Python for DevOps Master Class 2022: CI/CD, Github Actions, Containers, and Microservices MLOPs Foundations: Chapter 2 Walkthrough of Practical MLOps Learn Docker containers in One Hour Video Course Introduction to MLOps Walkthrough AZ-900 (Azure Fundamentals) Quick reference guide 52 Weeks of AWS Episode 8: Infrastructure as Code with CDK and AWS Lambda Learn GCP Cloud Functions in One Hour Video Course Python Devops in TWO HOURS! MLOps Platforms From Zero: DatMLOps Platforms From Zero: Databricks, MLFlow/MLRun/SKLearn AWS Machine Learning Certification In ONE HOUR Fast, documented Machine Learning APIs with FastAPI Zero to One: AWS Lambda with SAM and Python in One Hour AWS Storage Solutions 2022: EBS/S3/EFS/Glacier Python Bootcamp for Data Testing In Python book Minimal Python book Practical MLOps book Python for DevOps-Playlist.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield><subfield code="v">Study guides</subfield><subfield code="x">Examinations</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computing platforms</subfield><subfield code="v">Study guides</subfield><subfield code="x">Examinations</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer engineers</subfield><subfield code="x">Certification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infonuagique ; Examens ; Guides de l'étudiant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plateformes (Informatique) ; Examens ; Guides de l'étudiant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Study guides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gift, Noah</subfield><subfield code="e">PräsentatorIn</subfield><subfield code="4">pre</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Pragmatic AI Solutions (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/03212023VIDEOPAIML/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-092524532 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:48:58Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 video file (1 min.)) sound, color. |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Pragmatic AI Solutions |
record_format | marc |
series2 | Rough draft |
spelling | Google professional machine learning engineer course 2023 [First edition]. [Place of publication not identified] Pragmatic AI Solutions [2023] 1 online resource (1 video file (1 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough draft Online resource; title from title details screen (O'Reilly, viewed April 11, 2023) Google Professional Machine Learning Engineer Course 2023 (Rough Draft) Certification Exam Guide Welcome to the Google Professional Machine Learning Engineer Course! This course is designed to help you prepare for the Google Professional Machine Learning Engineer certification exam. Learning Objectives Develop a deep understanding of Google Cloud technologies and various ML models and techniques to design, build, and productionize machine learning solutions that address specific business challenges while adhering to responsible AI practices. Collaborate effectively with cross-functional teams, including application developers, data engineers, and data governance professionals, to ensure the long-term success of ML models throughout their development, deployment, and maintenance. Master the skills required to design, implement, and manage ML architectures, data pipelines, and metric interpretations, as well as optimize model performance through training, retraining, deploying, scheduling, monitoring, and refining models in scalable and efficient ways. Learn how to use the Google Cloud Platform (GCP) to build and deploy ML models, including how to use GCP services such as BigQuery, Cloud Storage, Cloud AI Platform, and Cloud Functions to build and deploy ML models. Who Should Take This Course? Data scientists Data engineers Machine learning engineers Software engineers Data analysts Data architects Business analysts Anyone interested in learning about machine learning and Google Cloud Platform Course One: Framing ML Problems Course Two: Architecting ML solutions Course Three: Designing data preparation and processing systems Course Four: Developing ML models Course Five: Automating and orchestrating ML pipelines Course Six: Monitoring, optimizing, and maintaining ML solutions Additional Popular Resources Pytest Master Class AWS Solutions Architect Professional Course Github Actions and GitOps in One Hour Video Course Jenkins CI/CD and Github in One Hour Video Course AWS Certified Cloud Practitioner Video Course Advanced Testing with Pytest Video Course AWS Solutions Architect Certification In ONE HOUR Python for DevOps Master Class 2022: CI/CD, Github Actions, Containers, and Microservices MLOPs Foundations: Chapter 2 Walkthrough of Practical MLOps Learn Docker containers in One Hour Video Course Introduction to MLOps Walkthrough AZ-900 (Azure Fundamentals) Quick reference guide 52 Weeks of AWS Episode 8: Infrastructure as Code with CDK and AWS Lambda Learn GCP Cloud Functions in One Hour Video Course Python Devops in TWO HOURS! MLOps Platforms From Zero: DatMLOps Platforms From Zero: Databricks, MLFlow/MLRun/SKLearn AWS Machine Learning Certification In ONE HOUR Fast, documented Machine Learning APIs with FastAPI Zero to One: AWS Lambda with SAM and Python in One Hour AWS Storage Solutions 2022: EBS/S3/EFS/Glacier Python Bootcamp for Data Testing In Python book Minimal Python book Practical MLOps book Python for DevOps-Playlist. Cloud computing Study guides Examinations Computing platforms Study guides Examinations Computer engineers Certification Infonuagique ; Examens ; Guides de l'étudiant Plateformes (Informatique) ; Examens ; Guides de l'étudiant Instructional films Internet videos Nonfiction films Study guides Films de formation Films autres que de fiction Vidéos sur Internet Gift, Noah PräsentatorIn pre Pragmatic AI Solutions (Firm), Verlag pbl TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/03212023VIDEOPAIML/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Google professional machine learning engineer course 2023 Cloud computing Study guides Examinations Computing platforms Study guides Examinations Computer engineers Certification Infonuagique ; Examens ; Guides de l'étudiant Plateformes (Informatique) ; Examens ; Guides de l'étudiant Instructional films Internet videos Nonfiction films Study guides Films de formation Films autres que de fiction Vidéos sur Internet |
title | Google professional machine learning engineer course 2023 |
title_auth | Google professional machine learning engineer course 2023 |
title_exact_search | Google professional machine learning engineer course 2023 |
title_full | Google professional machine learning engineer course 2023 |
title_fullStr | Google professional machine learning engineer course 2023 |
title_full_unstemmed | Google professional machine learning engineer course 2023 |
title_short | Google professional machine learning engineer course 2023 |
title_sort | google professional machine learning engineer course 2023 |
topic | Cloud computing Study guides Examinations Computing platforms Study guides Examinations Computer engineers Certification Infonuagique ; Examens ; Guides de l'étudiant Plateformes (Informatique) ; Examens ; Guides de l'étudiant Instructional films Internet videos Nonfiction films Study guides Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Cloud computing Study guides Examinations Computing platforms Study guides Examinations Computer engineers Certification Infonuagique ; Examens ; Guides de l'étudiant Plateformes (Informatique) ; Examens ; Guides de l'étudiant Instructional films Internet videos Nonfiction films Study guides Films de formation Films autres que de fiction Vidéos sur Internet |
url | https://learning.oreilly.com/library/view/-/03212023VIDEOPAIML/?ar |
work_keys_str_mv | AT giftnoah googleprofessionalmachinelearningengineercourse2023 AT pragmaticaisolutionsfirm googleprofessionalmachinelearningengineercourse2023 |