Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology

Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Devisetty, Upendra Kumar (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Erscheinungsort nicht ermittelbar] PACKT PUBLISHING LIMITED 2022
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-08338149X
003 DE-627-1
005 20240228121838.0
007 cr uuu---uuuuu
008 221216s2022 xx |||||o 00| ||eng c
020 |a 9781804613016  |c electronic bk.  |9 978-1-80461-301-6 
020 |a 1804613010  |c electronic bk.  |9 1-80461-301-0 
020 |a 9781804615447  |9 978-1-80461-544-7 
035 |a (DE-627-1)08338149X 
035 |a (DE-599)KEP08338149X 
035 |a (ORHE)9781804615447 
035 |a (DE-627-1)08338149X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 572.8/60727  |2 23/eng/20221122 
100 1 |a Devisetty, Upendra Kumar  |e VerfasserIn  |4 aut 
245 1 0 |a Deep Learning for Genomics  |b Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology 
264 1 |a [Erscheinungsort nicht ermittelbar]  |b PACKT PUBLISHING LIMITED  |c 2022 
300 |a 1 online resource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts. 
650 0 |a Genomics  |x Statistical methods 
650 0 |a Genomics  |x Data processing 
650 4 |a Génomique ; Méthodes statistiques 
650 4 |a Génomique ; Informatique 
650 4 |a Genomics ; Data processing 
650 4 |a Genomics ; Statistical methods 
776 1 |z 9781804613016 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781804613016 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781804615447/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-08338149X
_version_ 1818767249268277248
adam_text
any_adam_object
author Devisetty, Upendra Kumar
author_facet Devisetty, Upendra Kumar
author_role aut
author_sort Devisetty, Upendra Kumar
author_variant u k d uk ukd
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)08338149X
(DE-599)KEP08338149X
(ORHE)9781804615447
dewey-full 572.8/60727
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572.8/60727
dewey-search 572.8/60727
dewey-sort 3572.8 560727
dewey-tens 570 - Biology
discipline Biologie
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04329cam a22004452 4500</leader><controlfield tag="001">ZDB-30-ORH-08338149X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121838.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221216s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804613016</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-80461-301-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1804613010</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-80461-301-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804615447</subfield><subfield code="9">978-1-80461-544-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)08338149X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP08338149X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781804615447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)08338149X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.8/60727</subfield><subfield code="2">23/eng/20221122</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Devisetty, Upendra Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning for Genomics</subfield><subfield code="b">Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">PACKT PUBLISHING LIMITED</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Genomics</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Genomics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génomique ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génomique ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics ; Statistical methods</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781804613016</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781804613016</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781804615447/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-08338149X
illustrated Not Illustrated
indexdate 2024-12-18T08:46:53Z
institution BVB
isbn 9781804613016
1804613010
9781804615447
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher PACKT PUBLISHING LIMITED
record_format marc
spelling Devisetty, Upendra Kumar VerfasserIn aut
Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
[Erscheinungsort nicht ermittelbar] PACKT PUBLISHING LIMITED 2022
1 online resource
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.
Genomics Statistical methods
Genomics Data processing
Génomique ; Méthodes statistiques
Génomique ; Informatique
Genomics ; Data processing
Genomics ; Statistical methods
9781804613016
Erscheint auch als Druck-Ausgabe 9781804613016
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781804615447/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Devisetty, Upendra Kumar
Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
Genomics Statistical methods
Genomics Data processing
Génomique ; Méthodes statistiques
Génomique ; Informatique
Genomics ; Data processing
Genomics ; Statistical methods
title Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_auth Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_exact_search Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_full Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_fullStr Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_full_unstemmed Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
title_short Deep Learning for Genomics
title_sort deep learning for genomics data driven approaches for genomics applications in life sciences and biotechnology
title_sub Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
topic Genomics Statistical methods
Genomics Data processing
Génomique ; Méthodes statistiques
Génomique ; Informatique
Genomics ; Data processing
Genomics ; Statistical methods
topic_facet Genomics Statistical methods
Genomics Data processing
Génomique ; Méthodes statistiques
Génomique ; Informatique
Genomics ; Data processing
Genomics ; Statistical methods
url https://learning.oreilly.com/library/view/-/9781804615447/?ar
work_keys_str_mv AT devisettyupendrakumar deeplearningforgenomicsdatadrivenapproachesforgenomicsapplicationsinlifesciencesandbiotechnology