Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology
Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics E...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
PACKT PUBLISHING LIMITED
2022
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-08338149X | ||
003 | DE-627-1 | ||
005 | 20240228121838.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221216s2022 xx |||||o 00| ||eng c | ||
020 | |a 9781804613016 |c electronic bk. |9 978-1-80461-301-6 | ||
020 | |a 1804613010 |c electronic bk. |9 1-80461-301-0 | ||
020 | |a 9781804615447 |9 978-1-80461-544-7 | ||
035 | |a (DE-627-1)08338149X | ||
035 | |a (DE-599)KEP08338149X | ||
035 | |a (ORHE)9781804615447 | ||
035 | |a (DE-627-1)08338149X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 572.8/60727 |2 23/eng/20221122 | |
100 | 1 | |a Devisetty, Upendra Kumar |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep Learning for Genomics |b Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b PACKT PUBLISHING LIMITED |c 2022 | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts. | ||
650 | 0 | |a Genomics |x Statistical methods | |
650 | 0 | |a Genomics |x Data processing | |
650 | 4 | |a Génomique ; Méthodes statistiques | |
650 | 4 | |a Génomique ; Informatique | |
650 | 4 | |a Genomics ; Data processing | |
650 | 4 | |a Genomics ; Statistical methods | |
776 | 1 | |z 9781804613016 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781804613016 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781804615447/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-08338149X |
---|---|
_version_ | 1818767249268277248 |
adam_text | |
any_adam_object | |
author | Devisetty, Upendra Kumar |
author_facet | Devisetty, Upendra Kumar |
author_role | aut |
author_sort | Devisetty, Upendra Kumar |
author_variant | u k d uk ukd |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)08338149X (DE-599)KEP08338149X (ORHE)9781804615447 |
dewey-full | 572.8/60727 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.8/60727 |
dewey-search | 572.8/60727 |
dewey-sort | 3572.8 560727 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04329cam a22004452 4500</leader><controlfield tag="001">ZDB-30-ORH-08338149X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121838.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221216s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804613016</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-80461-301-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1804613010</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-80461-301-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804615447</subfield><subfield code="9">978-1-80461-544-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)08338149X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP08338149X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781804615447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)08338149X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.8/60727</subfield><subfield code="2">23/eng/20221122</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Devisetty, Upendra Kumar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning for Genomics</subfield><subfield code="b">Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">PACKT PUBLISHING LIMITED</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Genomics</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Genomics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génomique ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génomique ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomics ; Statistical methods</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781804613016</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781804613016</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781804615447/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-08338149X |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:46:53Z |
institution | BVB |
isbn | 9781804613016 1804613010 9781804615447 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | PACKT PUBLISHING LIMITED |
record_format | marc |
spelling | Devisetty, Upendra Kumar VerfasserIn aut Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology [Erscheinungsort nicht ermittelbar] PACKT PUBLISHING LIMITED 2022 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts. Genomics Statistical methods Genomics Data processing Génomique ; Méthodes statistiques Génomique ; Informatique Genomics ; Data processing Genomics ; Statistical methods 9781804613016 Erscheint auch als Druck-Ausgabe 9781804613016 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781804615447/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Devisetty, Upendra Kumar Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology Genomics Statistical methods Genomics Data processing Génomique ; Méthodes statistiques Génomique ; Informatique Genomics ; Data processing Genomics ; Statistical methods |
title | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_auth | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_exact_search | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_full | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_fullStr | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_full_unstemmed | Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
title_short | Deep Learning for Genomics |
title_sort | deep learning for genomics data driven approaches for genomics applications in life sciences and biotechnology |
title_sub | Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology |
topic | Genomics Statistical methods Genomics Data processing Génomique ; Méthodes statistiques Génomique ; Informatique Genomics ; Data processing Genomics ; Statistical methods |
topic_facet | Genomics Statistical methods Genomics Data processing Génomique ; Méthodes statistiques Génomique ; Informatique Genomics ; Data processing Genomics ; Statistical methods |
url | https://learning.oreilly.com/library/view/-/9781804615447/?ar |
work_keys_str_mv | AT devisettyupendrakumar deeplearningforgenomicsdatadrivenapproachesforgenomicsapplicationsinlifesciencesandbiotechnology |