In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data

Process tabular data and build high-performance query engines on modern CPUs and GPUs using Apache Arrow, a standardized language-independent memory format, for optimal performance Key Features Learn about Apache Arrow's data types and interoperability with pandas and Parquet Work with Apache A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Topol, Matthew (VerfasserIn)
Weitere Verfasser: McKinney, Wes (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing, Limited 2022
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-081559747
003 DE-627-1
005 20240228121717.0
007 cr uuu---uuuuu
008 220815s2022 xx |||||o 00| ||eng c
020 |a 1801073430  |9 1-80107-343-0 
020 |a 9781801073431  |c electronic bk.  |9 978-1-80107-343-1 
035 |a (DE-627-1)081559747 
035 |a (DE-599)KEP081559747 
035 |a (ORHE)9781801071031 
035 |a (DE-627-1)081559747 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/12  |2 23/eng/20220706 
100 1 |a Topol, Matthew  |e VerfasserIn  |4 aut 
245 1 0 |a In-Memory Analytics with Apache Arrow  |b Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data  |c Matthew Topol ; foreword by Wes McKinney 
264 1 |a Birmingham  |b Packt Publishing, Limited  |c 2022 
300 |a 1 online resource (392 pages) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Print version record 
520 |a Process tabular data and build high-performance query engines on modern CPUs and GPUs using Apache Arrow, a standardized language-independent memory format, for optimal performance Key Features Learn about Apache Arrow's data types and interoperability with pandas and Parquet Work with Apache Arrow Flight RPC, Compute, and Dataset APIs to produce and consume tabular data Reviewed, contributed, and supported by Dremio, the co-creator of Apache Arrow Book Description Apache Arrow is designed to accelerate analytics and allow the exchange of data across big data systems easily. In-Memory Analytics with Apache Arrow begins with a quick overview of the Apache Arrow format, before moving on to helping you to understand Arrow's versatility and benefits as you walk through a variety of real-world use cases. You'll cover key tasks such as enhancing data science workflows with Arrow, using Arrow and Apache Parquet with Apache Spark and Jupyter for better performance and hassle-free data translation, as well as working with Perspective, an open source interactive graphical and tabular analysis tool for browsers. As you advance, you'll explore the different data interchange and storage formats and become well-versed with the relationships between Arrow, Parquet, Feather, Protobuf, Flatbuffers, JSON, and CSV. In addition to understanding the basic structure of the Arrow Flight and Flight SQL protocols, you'll learn about Dremio's usage of Apache Arrow to enhance SQL analytics and discover how Arrow can be used in web-based browser apps. Finally, you'll get to grips with the upcoming features of Arrow to help you stay ahead of the curve. By the end of this book, you will have all the building blocks to create useful, efficient, and powerful analytical services and utilities with Apache Arrow. What you will learn Use Apache Arrow libraries to access data files both locally and in the cloud Understand the zero-copy elements of the Apache Arrow format Improve read performance by memory-mapping files with Apache Arrow Produce or consume Apache Arrow data efficiently using a C API Use the Apache Arrow Compute APIs to perform complex operations Create Arrow Flight servers and clients for transferring data quickly Build the Arrow libraries locally and contribute back to the community Who this book is for This book is for developers, data analysts, and data scientists looking to explore the capabilities of Apache Arrow from the ground up. This book will also be useful for any engineers who are working on building utilities for data analytics and query engines, or otherwise working with tabular data, regardless of the programming language. Some familiarity with basic concepts of data analysis will help you to get the most out of this book but isn't required. Code examples are provided in the C++, Go, and Python programming languages. 
650 0 |a Data mining 
650 0 |a Big data 
650 4 |a Exploration de données (Informatique) 
650 4 |a Données volumineuses 
650 4 |a Big data 
650 4 |a Data mining 
700 1 |a McKinney, Wes  |e MitwirkendeR  |4 ctb 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781801071031/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-081559747
_version_ 1818767252039663616
adam_text
any_adam_object
author Topol, Matthew
author2 McKinney, Wes
author2_role ctb
author2_variant w m wm
author_facet Topol, Matthew
McKinney, Wes
author_role aut
author_sort Topol, Matthew
author_variant m t mt
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)081559747
(DE-599)KEP081559747
(ORHE)9781801071031
dewey-full 006.3/12
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/12
dewey-search 006.3/12
dewey-sort 16.3 212
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04358cam a22004332 4500</leader><controlfield tag="001">ZDB-30-ORH-081559747</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220815s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1801073430</subfield><subfield code="9">1-80107-343-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801073431</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-80107-343-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)081559747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP081559747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781801071031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)081559747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23/eng/20220706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Topol, Matthew</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In-Memory Analytics with Apache Arrow</subfield><subfield code="b">Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data</subfield><subfield code="c">Matthew Topol ; foreword by Wes McKinney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (392 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Process tabular data and build high-performance query engines on modern CPUs and GPUs using Apache Arrow, a standardized language-independent memory format, for optimal performance Key Features Learn about Apache Arrow's data types and interoperability with pandas and Parquet Work with Apache Arrow Flight RPC, Compute, and Dataset APIs to produce and consume tabular data Reviewed, contributed, and supported by Dremio, the co-creator of Apache Arrow Book Description Apache Arrow is designed to accelerate analytics and allow the exchange of data across big data systems easily. In-Memory Analytics with Apache Arrow begins with a quick overview of the Apache Arrow format, before moving on to helping you to understand Arrow's versatility and benefits as you walk through a variety of real-world use cases. You'll cover key tasks such as enhancing data science workflows with Arrow, using Arrow and Apache Parquet with Apache Spark and Jupyter for better performance and hassle-free data translation, as well as working with Perspective, an open source interactive graphical and tabular analysis tool for browsers. As you advance, you'll explore the different data interchange and storage formats and become well-versed with the relationships between Arrow, Parquet, Feather, Protobuf, Flatbuffers, JSON, and CSV. In addition to understanding the basic structure of the Arrow Flight and Flight SQL protocols, you'll learn about Dremio's usage of Apache Arrow to enhance SQL analytics and discover how Arrow can be used in web-based browser apps. Finally, you'll get to grips with the upcoming features of Arrow to help you stay ahead of the curve. By the end of this book, you will have all the building blocks to create useful, efficient, and powerful analytical services and utilities with Apache Arrow. What you will learn Use Apache Arrow libraries to access data files both locally and in the cloud Understand the zero-copy elements of the Apache Arrow format Improve read performance by memory-mapping files with Apache Arrow Produce or consume Apache Arrow data efficiently using a C API Use the Apache Arrow Compute APIs to perform complex operations Create Arrow Flight servers and clients for transferring data quickly Build the Arrow libraries locally and contribute back to the community Who this book is for This book is for developers, data analysts, and data scientists looking to explore the capabilities of Apache Arrow from the ground up. This book will also be useful for any engineers who are working on building utilities for data analytics and query engines, or otherwise working with tabular data, regardless of the programming language. Some familiarity with basic concepts of data analysis will help you to get the most out of this book but isn't required. Code examples are provided in the C++, Go, and Python programming languages.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McKinney, Wes</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781801071031/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-081559747
illustrated Not Illustrated
indexdate 2024-12-18T08:46:55Z
institution BVB
isbn 1801073430
9781801073431
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (392 pages)
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Packt Publishing, Limited
record_format marc
spelling Topol, Matthew VerfasserIn aut
In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data Matthew Topol ; foreword by Wes McKinney
Birmingham Packt Publishing, Limited 2022
1 online resource (392 pages)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Print version record
Process tabular data and build high-performance query engines on modern CPUs and GPUs using Apache Arrow, a standardized language-independent memory format, for optimal performance Key Features Learn about Apache Arrow's data types and interoperability with pandas and Parquet Work with Apache Arrow Flight RPC, Compute, and Dataset APIs to produce and consume tabular data Reviewed, contributed, and supported by Dremio, the co-creator of Apache Arrow Book Description Apache Arrow is designed to accelerate analytics and allow the exchange of data across big data systems easily. In-Memory Analytics with Apache Arrow begins with a quick overview of the Apache Arrow format, before moving on to helping you to understand Arrow's versatility and benefits as you walk through a variety of real-world use cases. You'll cover key tasks such as enhancing data science workflows with Arrow, using Arrow and Apache Parquet with Apache Spark and Jupyter for better performance and hassle-free data translation, as well as working with Perspective, an open source interactive graphical and tabular analysis tool for browsers. As you advance, you'll explore the different data interchange and storage formats and become well-versed with the relationships between Arrow, Parquet, Feather, Protobuf, Flatbuffers, JSON, and CSV. In addition to understanding the basic structure of the Arrow Flight and Flight SQL protocols, you'll learn about Dremio's usage of Apache Arrow to enhance SQL analytics and discover how Arrow can be used in web-based browser apps. Finally, you'll get to grips with the upcoming features of Arrow to help you stay ahead of the curve. By the end of this book, you will have all the building blocks to create useful, efficient, and powerful analytical services and utilities with Apache Arrow. What you will learn Use Apache Arrow libraries to access data files both locally and in the cloud Understand the zero-copy elements of the Apache Arrow format Improve read performance by memory-mapping files with Apache Arrow Produce or consume Apache Arrow data efficiently using a C API Use the Apache Arrow Compute APIs to perform complex operations Create Arrow Flight servers and clients for transferring data quickly Build the Arrow libraries locally and contribute back to the community Who this book is for This book is for developers, data analysts, and data scientists looking to explore the capabilities of Apache Arrow from the ground up. This book will also be useful for any engineers who are working on building utilities for data analytics and query engines, or otherwise working with tabular data, regardless of the programming language. Some familiarity with basic concepts of data analysis will help you to get the most out of this book but isn't required. Code examples are provided in the C++, Go, and Python programming languages.
Data mining
Big data
Exploration de données (Informatique)
Données volumineuses
McKinney, Wes MitwirkendeR ctb
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781801071031/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Topol, Matthew
In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data
Data mining
Big data
Exploration de données (Informatique)
Données volumineuses
title In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data
title_auth In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data
title_exact_search In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data
title_full In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data Matthew Topol ; foreword by Wes McKinney
title_fullStr In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data Matthew Topol ; foreword by Wes McKinney
title_full_unstemmed In-Memory Analytics with Apache Arrow Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data Matthew Topol ; foreword by Wes McKinney
title_short In-Memory Analytics with Apache Arrow
title_sort in memory analytics with apache arrow perform fast and efficient data analytics on both flat and hierarchical structured data
title_sub Perform Fast and Efficient Data Analytics on Both Flat and Hierarchical Structured Data
topic Data mining
Big data
Exploration de données (Informatique)
Données volumineuses
topic_facet Data mining
Big data
Exploration de données (Informatique)
Données volumineuses
url https://learning.oreilly.com/library/view/-/9781801071031/?ar
work_keys_str_mv AT topolmatthew inmemoryanalyticswithapachearrowperformfastandefficientdataanalyticsonbothflatandhierarchicalstructureddata
AT mckinneywes inmemoryanalyticswithapachearrowperformfastandefficientdataanalyticsonbothflatandhierarchicalstructureddata