Efficient machine learning

Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch Video
Sprache:English
Veröffentlicht: [Sebastopol, California] O'Reilly Media, Inc. [2022]
Ausgabe:[First edition].
Schriftenreihe:Artificial intelligence superstream
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cgm a22000002 4500
001 ZDB-30-ORH-077382900
003 DE-627-1
005 20240228121623.0
006 m o | |
007 cr uuu---uuuuu
008 220405s2022 xx ||| |o o ||eng c
035 |a (DE-627-1)077382900 
035 |a (DE-599)KEP077382900 
035 |a (ORHE)0636920696421 
035 |a (DE-627-1)077382900 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23 
245 1 0 |a Efficient machine learning  |c Shingai Manjengwa 
250 |a [First edition]. 
264 1 |a [Sebastopol, California]  |b O'Reilly Media, Inc.  |c [2022] 
300 |a 1 online resource (1 video file (3 hr., 13 min.))  |b sound, color. 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Artificial intelligence superstream 
500 |a Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) 
520 |a Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video). 
650 0 |a Machine learning 
650 4 |a Apprentissage automatique 
650 4 |a Machine learning  |0 (OCoLC)fst01004795 
650 4 |a Instructional films  |0 (OCoLC)fst01726236 
650 4 |a Internet videos  |0 (OCoLC)fst01750214 
650 4 |a Nonfiction films  |0 (OCoLC)fst01710269 
650 4 |a Instructional films 
650 4 |a Nonfiction films 
650 4 |a Internet videos 
650 4 |a Films de formation 
650 4 |a Films autres que de fiction 
650 4 |a Vidéos sur Internet 
655 2 |a Webcast 
700 1 |a Manjengwa, Shingai  |e GastgeberIn  |4 hst 
710 2 |a O'Reilly (Firm),  |e Verlag  |4 pbl 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/0636920696421/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
935 |c vide 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-077382900
_version_ 1818767383211278336
adam_text
any_adam_object
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)077382900
(DE-599)KEP077382900
(ORHE)0636920696421
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition [First edition].
format Electronic
Video
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03417cgm a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-077382900</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121623.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220405s2022 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077382900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0636920696421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382900</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient machine learning</subfield><subfield code="c">Shingai Manjengwa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (3 hr., 13 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Artificial intelligence superstream</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed March 10, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="0">(OCoLC)fst01004795</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield><subfield code="0">(OCoLC)fst01726236</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield><subfield code="0">(OCoLC)fst01750214</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield><subfield code="0">(OCoLC)fst01710269</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="655" ind1=" " ind2="2"><subfield code="a">Webcast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manjengwa, Shingai</subfield><subfield code="e">GastgeberIn</subfield><subfield code="4">hst</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0636920696421/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
genre Webcast
genre_facet Webcast
id ZDB-30-ORH-077382900
illustrated Not Illustrated
indexdate 2024-12-18T08:49:00Z
institution BVB
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 video file (3 hr., 13 min.)) sound, color.
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher O'Reilly Media, Inc.
record_format marc
series2 Artificial intelligence superstream
spelling Efficient machine learning Shingai Manjengwa
[First edition].
[Sebastopol, California] O'Reilly Media, Inc. [2022]
1 online resource (1 video file (3 hr., 13 min.)) sound, color.
zweidimensionales bewegtes Bild tdi rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Artificial intelligence superstream
Online resource; title from title details screen (O'Reilly, viewed March 10, 2022)
Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video).
Machine learning
Apprentissage automatique
Machine learning (OCoLC)fst01004795
Instructional films (OCoLC)fst01726236
Internet videos (OCoLC)fst01750214
Nonfiction films (OCoLC)fst01710269
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
Webcast
Manjengwa, Shingai GastgeberIn hst
O'Reilly (Firm), Verlag pbl
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/0636920696421/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Efficient machine learning
Machine learning
Apprentissage automatique
Machine learning (OCoLC)fst01004795
Instructional films (OCoLC)fst01726236
Internet videos (OCoLC)fst01750214
Nonfiction films (OCoLC)fst01710269
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
subject_GND (OCoLC)fst01004795
(OCoLC)fst01726236
(OCoLC)fst01750214
(OCoLC)fst01710269
title Efficient machine learning
title_auth Efficient machine learning
title_exact_search Efficient machine learning
title_full Efficient machine learning Shingai Manjengwa
title_fullStr Efficient machine learning Shingai Manjengwa
title_full_unstemmed Efficient machine learning Shingai Manjengwa
title_short Efficient machine learning
title_sort efficient machine learning
topic Machine learning
Apprentissage automatique
Machine learning (OCoLC)fst01004795
Instructional films (OCoLC)fst01726236
Internet videos (OCoLC)fst01750214
Nonfiction films (OCoLC)fst01710269
Instructional films
Nonfiction films
Internet videos
Films de formation
Films autres que de fiction
Vidéos sur Internet
topic_facet Machine learning
Apprentissage automatique
Instructional films
Internet videos
Nonfiction films
Films de formation
Films autres que de fiction
Vidéos sur Internet
Webcast
url https://learning.oreilly.com/library/view/-/0636920696421/?ar
work_keys_str_mv AT manjengwashingai efficientmachinelearning
AT oreillyfirm efficientmachinelearning