Efficient machine learning
Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, o...
Gespeichert in:
Format: | Elektronisch Video |
---|---|
Sprache: | English |
Veröffentlicht: |
[Sebastopol, California]
O'Reilly Media, Inc.
[2022]
|
Ausgabe: | [First edition]. |
Schriftenreihe: | Artificial intelligence superstream
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-077382900 | ||
003 | DE-627-1 | ||
005 | 20240228121623.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 220405s2022 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)077382900 | ||
035 | |a (DE-599)KEP077382900 | ||
035 | |a (ORHE)0636920696421 | ||
035 | |a (DE-627-1)077382900 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23 | |
245 | 1 | 0 | |a Efficient machine learning |c Shingai Manjengwa |
250 | |a [First edition]. | ||
264 | 1 | |a [Sebastopol, California] |b O'Reilly Media, Inc. |c [2022] | |
300 | |a 1 online resource (1 video file (3 hr., 13 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Artificial intelligence superstream | |
500 | |a Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) | ||
520 | |a Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video). | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Machine learning |0 (OCoLC)fst01004795 | |
650 | 4 | |a Instructional films |0 (OCoLC)fst01726236 | |
650 | 4 | |a Internet videos |0 (OCoLC)fst01750214 | |
650 | 4 | |a Nonfiction films |0 (OCoLC)fst01710269 | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
655 | 2 | |a Webcast | |
700 | 1 | |a Manjengwa, Shingai |e GastgeberIn |4 hst | |
710 | 2 | |a O'Reilly (Firm), |e Verlag |4 pbl | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0636920696421/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-077382900 |
---|---|
_version_ | 1818767383211278336 |
adam_text | |
any_adam_object | |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)077382900 (DE-599)KEP077382900 (ORHE)0636920696421 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03417cgm a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-077382900</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121623.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220405s2022 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077382900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0636920696421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)077382900</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient machine learning</subfield><subfield code="c">Shingai Manjengwa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 video file (3 hr., 13 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Artificial intelligence superstream</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed March 10, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="0">(OCoLC)fst01004795</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield><subfield code="0">(OCoLC)fst01726236</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield><subfield code="0">(OCoLC)fst01750214</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield><subfield code="0">(OCoLC)fst01710269</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="655" ind1=" " ind2="2"><subfield code="a">Webcast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manjengwa, Shingai</subfield><subfield code="e">GastgeberIn</subfield><subfield code="4">hst</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0636920696421/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
genre | Webcast |
genre_facet | Webcast |
id | ZDB-30-ORH-077382900 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:49:00Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 video file (3 hr., 13 min.)) sound, color. |
psigel | ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
series2 | Artificial intelligence superstream |
spelling | Efficient machine learning Shingai Manjengwa [First edition]. [Sebastopol, California] O'Reilly Media, Inc. [2022] 1 online resource (1 video file (3 hr., 13 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Artificial intelligence superstream Online resource; title from title details screen (O'Reilly, viewed March 10, 2022) Sponsored by Intel Machine learning has grown significantly, and with it the footprint of ML models--which can make training, deploying, and monitoring difficult and expensive. What if you could make your ML models and systems more efficient, whether in the form of cost, compute, storage, latency, or carbon footprint? Join us for this Superstream where experts dive into techniques for using fewer resources and delivering better quality. About the AI Superstream Series: This three-part series of half-day online events is packed with insights from some of the brightest minds in AI. You'll get a deeper understanding of the latest tools and technologies that can help keep your organization competitive and learn to leverage AI to drive real business results. What you'll learn and how you can apply it Understand hardware and software resources required for deep learning Learn how to optimize ML models and workloads Discover how to build robust and scalable machine learning systems Explore AI efficiencies that combat climate change This recording of a live event is for you because... You're an ML engineer or data practitioner who wants to use more-efficient algorithms and improve ML model efficiency. You're a data team leader or CDO who wants to proactively reduce the cost and resource use of ML systems and pipelines. You're a product stakeholder who wants to learn more about how ML efficiencies align with business goals. Recommended follow-up: Read Efficient Deep Learning (early release book) Watch Data Structures, Algorithms, and Machine Learning Optimization (video). Machine learning Apprentissage automatique Machine learning (OCoLC)fst01004795 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet Webcast Manjengwa, Shingai GastgeberIn hst O'Reilly (Firm), Verlag pbl TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/0636920696421/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Efficient machine learning Machine learning Apprentissage automatique Machine learning (OCoLC)fst01004795 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
subject_GND | (OCoLC)fst01004795 (OCoLC)fst01726236 (OCoLC)fst01750214 (OCoLC)fst01710269 |
title | Efficient machine learning |
title_auth | Efficient machine learning |
title_exact_search | Efficient machine learning |
title_full | Efficient machine learning Shingai Manjengwa |
title_fullStr | Efficient machine learning Shingai Manjengwa |
title_full_unstemmed | Efficient machine learning Shingai Manjengwa |
title_short | Efficient machine learning |
title_sort | efficient machine learning |
topic | Machine learning Apprentissage automatique Machine learning (OCoLC)fst01004795 Instructional films (OCoLC)fst01726236 Internet videos (OCoLC)fst01750214 Nonfiction films (OCoLC)fst01710269 Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Machine learning Apprentissage automatique Instructional films Internet videos Nonfiction films Films de formation Films autres que de fiction Vidéos sur Internet Webcast |
url | https://learning.oreilly.com/library/view/-/0636920696421/?ar |
work_keys_str_mv | AT manjengwashingai efficientmachinelearning AT oreillyfirm efficientmachinelearning |