Practical linear algebra for data science from core concepts to applications using python
If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in de...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Inc.
2022
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-076597504 | ||
003 | DE-627-1 | ||
005 | 20240228121800.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220209s2022 xx |||||o 00| ||eng c | ||
020 | |a 1098120582 |c electronic book |9 1-0981-2058-2 | ||
020 | |a 9781098120573 |c electronic book |9 978-1-0981-2057-3 | ||
020 | |a 1098120574 |c electronic book |9 1-0981-2057-4 | ||
020 | |a 9781098120580 |c electronic book |9 978-1-0981-2058-0 | ||
035 | |a (DE-627-1)076597504 | ||
035 | |a (DE-599)KEP076597504 | ||
035 | |a (ORHE)9781098120603 | ||
035 | |a (DE-627-1)076597504 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 512/.5 |2 23/eng/20220913 | |
100 | 1 | |a Cohen, Mike X. |d 1979- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Practical linear algebra for data science |b from core concepts to applications using python |c Mike X Cohen |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc. |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 online resource (xiii, 311 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023) | ||
520 | |a If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis. | ||
650 | 0 | |a Algebras, Linear |x Data processing | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Algèbre linéaire ; Informatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Algebras, Linear ; Data processing | |
776 | 1 | |z 1098120612 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1098120612 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098120603/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-076597504 |
---|---|
_version_ | 1818767256702681088 |
adam_text | |
any_adam_object | |
author | Cohen, Mike X. 1979- |
author_facet | Cohen, Mike X. 1979- |
author_role | aut |
author_sort | Cohen, Mike X. 1979- |
author_variant | m x c mx mxc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)076597504 (DE-599)KEP076597504 (ORHE)9781098120603 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03216cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-076597504</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220209s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098120582</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-2058-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098120573</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-2057-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098120574</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-2057-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098120580</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-2058-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076597504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076597504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098120603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076597504</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">23/eng/20220913</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Mike X.</subfield><subfield code="d">1979-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical linear algebra for data science</subfield><subfield code="b">from core concepts to applications using python</subfield><subfield code="c">Mike X Cohen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 311 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebras, Linear</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre linéaire ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear ; Data processing</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1098120612</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1098120612</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098120603/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-076597504 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:47:00Z |
institution | BVB |
isbn | 1098120582 9781098120573 1098120574 9781098120580 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (xiii, 311 pages) illustrations |
psigel | ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Cohen, Mike X. 1979- VerfasserIn aut Practical linear algebra for data science from core concepts to applications using python Mike X Cohen First edition. Sebastopol, CA O'Reilly Media, Inc. 2022 ©2022 1 online resource (xiii, 311 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023) If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis. Algebras, Linear Data processing Python (Computer program language) Algèbre linéaire ; Informatique Python (Langage de programmation) Algebras, Linear ; Data processing 1098120612 Erscheint auch als Druck-Ausgabe 1098120612 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781098120603/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Cohen, Mike X. 1979- Practical linear algebra for data science from core concepts to applications using python Algebras, Linear Data processing Python (Computer program language) Algèbre linéaire ; Informatique Python (Langage de programmation) Algebras, Linear ; Data processing |
title | Practical linear algebra for data science from core concepts to applications using python |
title_auth | Practical linear algebra for data science from core concepts to applications using python |
title_exact_search | Practical linear algebra for data science from core concepts to applications using python |
title_full | Practical linear algebra for data science from core concepts to applications using python Mike X Cohen |
title_fullStr | Practical linear algebra for data science from core concepts to applications using python Mike X Cohen |
title_full_unstemmed | Practical linear algebra for data science from core concepts to applications using python Mike X Cohen |
title_short | Practical linear algebra for data science |
title_sort | practical linear algebra for data science from core concepts to applications using python |
title_sub | from core concepts to applications using python |
topic | Algebras, Linear Data processing Python (Computer program language) Algèbre linéaire ; Informatique Python (Langage de programmation) Algebras, Linear ; Data processing |
topic_facet | Algebras, Linear Data processing Python (Computer program language) Algèbre linéaire ; Informatique Python (Langage de programmation) Algebras, Linear ; Data processing |
url | https://learning.oreilly.com/library/view/-/9781098120603/?ar |
work_keys_str_mv | AT cohenmikex practicallinearalgebrafordatasciencefromcoreconceptstoapplicationsusingpython |