Practical linear algebra for data science from core concepts to applications using python

If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cohen, Mike X. 1979- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Sebastopol, CA O'Reilly Media, Inc. 2022
Ausgabe:First edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-076597504
003 DE-627-1
005 20240228121800.0
007 cr uuu---uuuuu
008 220209s2022 xx |||||o 00| ||eng c
020 |a 1098120582  |c electronic book  |9 1-0981-2058-2 
020 |a 9781098120573  |c electronic book  |9 978-1-0981-2057-3 
020 |a 1098120574  |c electronic book  |9 1-0981-2057-4 
020 |a 9781098120580  |c electronic book  |9 978-1-0981-2058-0 
035 |a (DE-627-1)076597504 
035 |a (DE-599)KEP076597504 
035 |a (ORHE)9781098120603 
035 |a (DE-627-1)076597504 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 512/.5  |2 23/eng/20220913 
100 1 |a Cohen, Mike X.  |d 1979-  |e VerfasserIn  |4 aut 
245 1 0 |a Practical linear algebra for data science  |b from core concepts to applications using python  |c Mike X Cohen 
250 |a First edition. 
264 1 |a Sebastopol, CA  |b O'Reilly Media, Inc.  |c 2022 
264 4 |c ©2022 
300 |a 1 online resource (xiii, 311 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023) 
520 |a If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis. 
650 0 |a Algebras, Linear  |x Data processing 
650 0 |a Python (Computer program language) 
650 4 |a Algèbre linéaire ; Informatique 
650 4 |a Python (Langage de programmation) 
650 4 |a Python (Computer program language) 
650 4 |a Algebras, Linear ; Data processing 
776 1 |z 1098120612 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 1098120612 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781098120603/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-076597504
_version_ 1818767256702681088
adam_text
any_adam_object
author Cohen, Mike X. 1979-
author_facet Cohen, Mike X. 1979-
author_role aut
author_sort Cohen, Mike X. 1979-
author_variant m x c mx mxc
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)076597504
(DE-599)KEP076597504
(ORHE)9781098120603
dewey-full 512/.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.5
dewey-search 512/.5
dewey-sort 3512 15
dewey-tens 510 - Mathematics
discipline Mathematik
edition First edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03216cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-076597504</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220209s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098120582</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-2058-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098120573</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-2057-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098120574</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-2057-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098120580</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-2058-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076597504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076597504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098120603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076597504</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">23/eng/20220913</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Mike X.</subfield><subfield code="d">1979-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical linear algebra for data science</subfield><subfield code="b">from core concepts to applications using python</subfield><subfield code="c">Mike X Cohen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 311 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebras, Linear</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre linéaire ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear ; Data processing</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1098120612</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1098120612</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098120603/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-076597504
illustrated Illustrated
indexdate 2024-12-18T08:47:00Z
institution BVB
isbn 1098120582
9781098120573
1098120574
9781098120580
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (xiii, 311 pages) illustrations
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher O'Reilly Media, Inc.
record_format marc
spelling Cohen, Mike X. 1979- VerfasserIn aut
Practical linear algebra for data science from core concepts to applications using python Mike X Cohen
First edition.
Sebastopol, CA O'Reilly Media, Inc. 2022
©2022
1 online resource (xiii, 311 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 12, 2023)
If you want to work in any computational or technical field, you need to understand linear algebra. As the study of matrices and operations acting upon them, linear algebra is the mathematical basis of nearly all algorithms and analyses implemented in computers. But the way it's presented in decades-old textbooks is much different from how professionals use linear algebra today to solve real-world modern applications. This practical guide from Mike X Cohen teaches the core concepts of linear algebra as implemented in Python, including how they're used in data science, machine learning, deep learning, computational simulations, and biomedical data processing applications. Armed with knowledge from this book, you'll be able to understand, implement, and adapt myriad modern analysis methods and algorithms. Ideal for practitioners and students using computer technology and algorithms, this book introduces you to: The interpretations and applications of vectors and matrices Matrix arithmetic (various multiplications and transformations) Independence, rank, and inverses Important decompositions used in applied linear algebra (including LU and QR) Eigendecomposition and singular value decomposition Applications including least-squares model fitting and principal components analysis.
Algebras, Linear Data processing
Python (Computer program language)
Algèbre linéaire ; Informatique
Python (Langage de programmation)
Algebras, Linear ; Data processing
1098120612
Erscheint auch als Druck-Ausgabe 1098120612
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781098120603/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Cohen, Mike X. 1979-
Practical linear algebra for data science from core concepts to applications using python
Algebras, Linear Data processing
Python (Computer program language)
Algèbre linéaire ; Informatique
Python (Langage de programmation)
Algebras, Linear ; Data processing
title Practical linear algebra for data science from core concepts to applications using python
title_auth Practical linear algebra for data science from core concepts to applications using python
title_exact_search Practical linear algebra for data science from core concepts to applications using python
title_full Practical linear algebra for data science from core concepts to applications using python Mike X Cohen
title_fullStr Practical linear algebra for data science from core concepts to applications using python Mike X Cohen
title_full_unstemmed Practical linear algebra for data science from core concepts to applications using python Mike X Cohen
title_short Practical linear algebra for data science
title_sort practical linear algebra for data science from core concepts to applications using python
title_sub from core concepts to applications using python
topic Algebras, Linear Data processing
Python (Computer program language)
Algèbre linéaire ; Informatique
Python (Langage de programmation)
Algebras, Linear ; Data processing
topic_facet Algebras, Linear Data processing
Python (Computer program language)
Algèbre linéaire ; Informatique
Python (Langage de programmation)
Algebras, Linear ; Data processing
url https://learning.oreilly.com/library/view/-/9781098120603/?ar
work_keys_str_mv AT cohenmikex practicallinearalgebrafordatasciencefromcoreconceptstoapplicationsusingpython