Learning Ray flexible distributed Python for machine learning
Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You&...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Sebastopol, California
O'Reilly Media, Inc.
2023
|
Ausgabe: | Frist edtion. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-076596877 | ||
003 | DE-627-1 | ||
005 | 20240228121922.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220209s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781098117191 |c electronic book |9 978-1-0981-1719-1 | ||
020 | |a 1098117190 |c electronic book |9 1-0981-1719-0 | ||
035 | |a (DE-627-1)076596877 | ||
035 | |a (DE-599)KEP076596877 | ||
035 | |a (ORHE)9781098117214 | ||
035 | |a (DE-627-1)076596877 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.3 |2 23/eng/20230221 | |
100 | 1 | |a Pumperla, Max |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Learning Ray |b flexible distributed Python for machine learning |c Max Pumperla, Edward Oakes & Richard Liaw |
250 | |a Frist edtion. | ||
264 | 1 | |a Sebastopol, California |b O'Reilly Media, Inc. |c 2023 | |
264 | 4 | |c ©2023 | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from digital title page (viewed on April 04, 2023) | ||
520 | |a Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You'll be able to use Ray to structure and run machine learning programs at scale. | ||
650 | 0 | |a Application program interfaces (Computer software) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Electronic data processing |x Distributed processing | |
650 | 4 | |a Interfaces de programmation d'applications | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Traitement réparti | |
650 | 4 | |a APIs (interfaces) | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Application program interfaces (Computer software) | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Electronic data processing ; Distributed processing | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Oakes, Edward |e VerfasserIn |4 aut | |
700 | 1 | |a Liaw, Richard |e VerfasserIn |4 aut | |
776 | 1 | |z 1098117220 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1098117220 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098117214/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-076596877 |
---|---|
_version_ | 1818767256827461632 |
adam_text | |
any_adam_object | |
author | Pumperla, Max Oakes, Edward Liaw, Richard |
author_facet | Pumperla, Max Oakes, Edward Liaw, Richard |
author_role | aut aut aut |
author_sort | Pumperla, Max |
author_variant | m p mp e o eo r l rl |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)076596877 (DE-599)KEP076596877 (ORHE)9781098117214 |
dewey-full | 005.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.3 |
dewey-search | 005.3 |
dewey-sort | 15.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Frist edtion. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02703cam a22006252 4500</leader><controlfield tag="001">ZDB-30-ORH-076596877</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220209s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098117191</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-0981-1719-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098117190</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-0981-1719-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076596877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098117214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596877</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.3</subfield><subfield code="2">23/eng/20230221</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pumperla, Max</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Ray</subfield><subfield code="b">flexible distributed Python for machine learning</subfield><subfield code="c">Max Pumperla, Edward Oakes & Richard Liaw</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Frist edtion.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, California</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on April 04, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You'll be able to use Ray to structure and run machine learning programs at scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application program interfaces (Computer software)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interfaces de programmation d'applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement réparti</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">APIs (interfaces)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application program interfaces (Computer software)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing ; Distributed processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oakes, Edward</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liaw, Richard</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1098117220</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1098117220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098117214/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-076596877 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:47:00Z |
institution | BVB |
isbn | 9781098117191 1098117190 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Pumperla, Max VerfasserIn aut Learning Ray flexible distributed Python for machine learning Max Pumperla, Edward Oakes & Richard Liaw Frist edtion. Sebastopol, California O'Reilly Media, Inc. 2023 ©2023 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Description based on online resource; title from digital title page (viewed on April 04, 2023) Get started with Ray, the open source distributed computing framework that simplifies the process of scaling compute-intensive Python workloads. With this practical book, Python programmers, data engineers, and data scientists will learn how to leverage Ray locally and spin up compute clusters. You'll be able to use Ray to structure and run machine learning programs at scale. Application program interfaces (Computer software) Machine learning Python (Computer program language) Artificial intelligence Electronic data processing Distributed processing Interfaces de programmation d'applications Apprentissage automatique Python (Langage de programmation) Intelligence artificielle Traitement réparti APIs (interfaces) artificial intelligence Electronic data processing ; Distributed processing Oakes, Edward VerfasserIn aut Liaw, Richard VerfasserIn aut 1098117220 Erscheint auch als Druck-Ausgabe 1098117220 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781098117214/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Pumperla, Max Oakes, Edward Liaw, Richard Learning Ray flexible distributed Python for machine learning Application program interfaces (Computer software) Machine learning Python (Computer program language) Artificial intelligence Electronic data processing Distributed processing Interfaces de programmation d'applications Apprentissage automatique Python (Langage de programmation) Intelligence artificielle Traitement réparti APIs (interfaces) artificial intelligence Electronic data processing ; Distributed processing |
title | Learning Ray flexible distributed Python for machine learning |
title_auth | Learning Ray flexible distributed Python for machine learning |
title_exact_search | Learning Ray flexible distributed Python for machine learning |
title_full | Learning Ray flexible distributed Python for machine learning Max Pumperla, Edward Oakes & Richard Liaw |
title_fullStr | Learning Ray flexible distributed Python for machine learning Max Pumperla, Edward Oakes & Richard Liaw |
title_full_unstemmed | Learning Ray flexible distributed Python for machine learning Max Pumperla, Edward Oakes & Richard Liaw |
title_short | Learning Ray |
title_sort | learning ray flexible distributed python for machine learning |
title_sub | flexible distributed Python for machine learning |
topic | Application program interfaces (Computer software) Machine learning Python (Computer program language) Artificial intelligence Electronic data processing Distributed processing Interfaces de programmation d'applications Apprentissage automatique Python (Langage de programmation) Intelligence artificielle Traitement réparti APIs (interfaces) artificial intelligence Electronic data processing ; Distributed processing |
topic_facet | Application program interfaces (Computer software) Machine learning Python (Computer program language) Artificial intelligence Electronic data processing Distributed processing Interfaces de programmation d'applications Apprentissage automatique Python (Langage de programmation) Intelligence artificielle Traitement réparti APIs (interfaces) artificial intelligence Electronic data processing ; Distributed processing |
url | https://learning.oreilly.com/library/view/-/9781098117214/?ar |
work_keys_str_mv | AT pumperlamax learningrayflexibledistributedpythonformachinelearning AT oakesedward learningrayflexibledistributedpythonformachinelearning AT liawrichard learningrayflexibledistributedpythonformachinelearning |