Machine learning with Pyspark with natural language processing and recommender systems

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Singh, Pramod (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: California Apress [2022]
Ausgabe:Second edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-072485787
003 DE-627-1
005 20240228121531.0
007 cr uuu---uuuuu
008 220112s2022 xx |||||o 00| ||eng c
020 |a 9781484277775  |c electronic bk.  |9 978-1-4842-7777-5 
020 |a 1484277775  |c electronic bk.  |9 1-4842-7777-5 
035 |a (DE-627-1)072485787 
035 |a (DE-599)KEP072485787 
035 |a (ORHE)9781484277775 
035 |a (DE-627-1)072485787 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a COM004000  |2 bisacsh 
082 0 |a 005.7  |2 23 
100 1 |a Singh, Pramod  |e VerfasserIn  |4 aut 
245 1 0 |a Machine learning with Pyspark  |b with natural language processing and recommender systems  |c Pramod Singh 
250 |a Second edition. 
264 1 |a California  |b Apress  |c [2022] 
300 |a 1 online resource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022) 
520 |a Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals. 
650 0 |a Application software  |x Development 
650 0 |a Python (Computer program language) 
650 0 |a SPARK (Computer program language) 
650 4 |a Logiciels d'application ; Développement 
650 4 |a Python (Langage de programmation) 
650 4 |a Application software ; Development 
650 4 |a Python (Computer program language) 
650 4 |a SPARK (Computer program language) 
776 1 |z 9781484277768 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781484277768 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781484277775/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-072485787
_version_ 1818767257769082880
adam_text
any_adam_object
author Singh, Pramod
author_facet Singh, Pramod
author_role aut
author_sort Singh, Pramod
author_variant p s ps
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)072485787
(DE-599)KEP072485787
(ORHE)9781484277775
dewey-full 005.7
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.7
dewey-search 005.7
dewey-sort 15.7
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition Second edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03841cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-072485787</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220112s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484277775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-7777-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484277775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-7777-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)072485787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP072485787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484277775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)072485787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Pramod</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with Pyspark</subfield><subfield code="b">with natural language processing and recommender systems</subfield><subfield code="c">Pramod Singh</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">California</subfield><subfield code="b">Apress</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">SPARK (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logiciels d'application ; Développement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application software ; Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPARK (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484277768</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484277768</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484277775/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-072485787
illustrated Not Illustrated
indexdate 2024-12-18T08:47:01Z
institution BVB
isbn 9781484277775
1484277775
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Apress
record_format marc
spelling Singh, Pramod VerfasserIn aut
Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh
Second edition.
California Apress [2022]
1 online resource
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022)
Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals.
Application software Development
Python (Computer program language)
SPARK (Computer program language)
Logiciels d'application ; Développement
Python (Langage de programmation)
Application software ; Development
9781484277768
Erscheint auch als Druck-Ausgabe 9781484277768
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781484277775/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Singh, Pramod
Machine learning with Pyspark with natural language processing and recommender systems
Application software Development
Python (Computer program language)
SPARK (Computer program language)
Logiciels d'application ; Développement
Python (Langage de programmation)
Application software ; Development
title Machine learning with Pyspark with natural language processing and recommender systems
title_auth Machine learning with Pyspark with natural language processing and recommender systems
title_exact_search Machine learning with Pyspark with natural language processing and recommender systems
title_full Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh
title_fullStr Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh
title_full_unstemmed Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh
title_short Machine learning with Pyspark
title_sort machine learning with pyspark with natural language processing and recommender systems
title_sub with natural language processing and recommender systems
topic Application software Development
Python (Computer program language)
SPARK (Computer program language)
Logiciels d'application ; Développement
Python (Langage de programmation)
Application software ; Development
topic_facet Application software Development
Python (Computer program language)
SPARK (Computer program language)
Logiciels d'application ; Développement
Python (Langage de programmation)
Application software ; Development
url https://learning.oreilly.com/library/view/-/9781484277775/?ar
work_keys_str_mv AT singhpramod machinelearningwithpysparkwithnaturallanguageprocessingandrecommendersystems