Machine learning with Pyspark with natural language processing and recommender systems
Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
California
Apress
[2022]
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-072485787 | ||
003 | DE-627-1 | ||
005 | 20240228121531.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220112s2022 xx |||||o 00| ||eng c | ||
020 | |a 9781484277775 |c electronic bk. |9 978-1-4842-7777-5 | ||
020 | |a 1484277775 |c electronic bk. |9 1-4842-7777-5 | ||
035 | |a (DE-627-1)072485787 | ||
035 | |a (DE-599)KEP072485787 | ||
035 | |a (ORHE)9781484277775 | ||
035 | |a (DE-627-1)072485787 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 0 | |a 005.7 |2 23 | |
100 | 1 | |a Singh, Pramod |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning with Pyspark |b with natural language processing and recommender systems |c Pramod Singh |
250 | |a Second edition. | ||
264 | 1 | |a California |b Apress |c [2022] | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022) | ||
520 | |a Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals. | ||
650 | 0 | |a Application software |x Development | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a SPARK (Computer program language) | |
650 | 4 | |a Logiciels d'application ; Développement | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Application software ; Development | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a SPARK (Computer program language) | |
776 | 1 | |z 9781484277768 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484277768 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484277775/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-072485787 |
---|---|
_version_ | 1818767257769082880 |
adam_text | |
any_adam_object | |
author | Singh, Pramod |
author_facet | Singh, Pramod |
author_role | aut |
author_sort | Singh, Pramod |
author_variant | p s ps |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)072485787 (DE-599)KEP072485787 (ORHE)9781484277775 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03841cam a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-072485787</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121531.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220112s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484277775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-7777-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484277775</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-7777-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)072485787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP072485787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484277775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)072485787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Pramod</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with Pyspark</subfield><subfield code="b">with natural language processing and recommender systems</subfield><subfield code="c">Pramod Singh</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">California</subfield><subfield code="b">Apress</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">SPARK (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logiciels d'application ; Développement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application software ; Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPARK (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484277768</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484277768</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484277775/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-072485787 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:47:01Z |
institution | BVB |
isbn | 9781484277775 1484277775 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Apress |
record_format | marc |
spelling | Singh, Pramod VerfasserIn aut Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh Second edition. California Apress [2022] 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Description based on online resource; title from digital title page (viewed on February 15, 2022) Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals. Application software Development Python (Computer program language) SPARK (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development 9781484277768 Erscheint auch als Druck-Ausgabe 9781484277768 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781484277775/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Singh, Pramod Machine learning with Pyspark with natural language processing and recommender systems Application software Development Python (Computer program language) SPARK (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
title | Machine learning with Pyspark with natural language processing and recommender systems |
title_auth | Machine learning with Pyspark with natural language processing and recommender systems |
title_exact_search | Machine learning with Pyspark with natural language processing and recommender systems |
title_full | Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh |
title_fullStr | Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh |
title_full_unstemmed | Machine learning with Pyspark with natural language processing and recommender systems Pramod Singh |
title_short | Machine learning with Pyspark |
title_sort | machine learning with pyspark with natural language processing and recommender systems |
title_sub | with natural language processing and recommender systems |
topic | Application software Development Python (Computer program language) SPARK (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
topic_facet | Application software Development Python (Computer program language) SPARK (Computer program language) Logiciels d'application ; Développement Python (Langage de programmation) Application software ; Development |
url | https://learning.oreilly.com/library/view/-/9781484277775/?ar |
work_keys_str_mv | AT singhpramod machinelearningwithpysparkwithnaturallanguageprocessingandrecommendersystems |