Fundamentals of deep learning designing next-generation machine intelligence algorithms

We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But decipher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buduma, Nithin (VerfasserIn), Buduma, Nikhil (VerfasserIn), Papa, Joe (VerfasserIn)
Weitere Verfasser: Locascio, Nicholas (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Sebastopol, CA O'Reilly Media, Incorporated [2022]
Ausgabe:Second edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-063079682
003 DE-627-1
005 20240228121706.0
007 cr uuu---uuuuu
008 210427s2022 xx |||||o 00| ||eng c
020 |a 9781492082156  |c electronic book  |9 978-1-4920-8215-6 
020 |a 1492082155  |c electronic book  |9 1-4920-8215-5 
020 |a 9781492082132  |c electronic bk.  |9 978-1-4920-8213-2 
020 |a 1492082139  |c electronic bk.  |9 1-4920-8213-9 
035 |a (DE-627-1)063079682 
035 |a (DE-599)KEP063079682 
035 |a (ORHE)9781492082170 
035 |a (DE-627-1)063079682 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.3/1  |2 23/eng/20220525 
100 1 |a Buduma, Nithin  |e VerfasserIn  |4 aut 
245 1 0 |a Fundamentals of deep learning  |b designing next-generation machine intelligence algorithms  |c Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio 
246 3 3 |a Designing next-generation machine intelligence algorithms 
250 |a Second edition. 
264 1 |a Sebastopol, CA  |b O'Reilly Media, Incorporated  |c [2022] 
300 |a 1 online resource (390 pages) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022) 
520 |a We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning. 
650 0 |a Artificial intelligence 
650 0 |a Machine learning 
650 0 |a Neural networks (Computer science) 
650 4 |a Intelligence artificielle 
650 4 |a Apprentissage automatique 
650 4 |a Réseaux neuronaux (Informatique) 
650 4 |a artificial intelligence 
650 4 |a Artificial intelligence 
650 4 |a Machine learning 
650 4 |a Neural networks (Computer science) 
700 1 |a Buduma, Nikhil  |e VerfasserIn  |4 aut 
700 1 |a Papa, Joe  |e VerfasserIn  |4 aut 
700 1 |a Locascio, Nicholas  |e MitwirkendeR  |4 ctb 
776 1 |z 9781492082187 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781492082187 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781492082170/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-063079682
_version_ 1818767265909178369
adam_text
any_adam_object
author Buduma, Nithin
Buduma, Nikhil
Papa, Joe
author2 Locascio, Nicholas
author2_role ctb
author2_variant n l nl
author_facet Buduma, Nithin
Buduma, Nikhil
Papa, Joe
Locascio, Nicholas
author_role aut
aut
aut
author_sort Buduma, Nithin
author_variant n b nb
n b nb
j p jp
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)063079682
(DE-599)KEP063079682
(ORHE)9781492082170
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition Second edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03580cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-063079682</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210427s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082156</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-8215-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492082155</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-8215-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082132</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4920-8213-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492082139</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4920-8213-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063079682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063079682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492082170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063079682</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20220525</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buduma, Nithin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of deep learning</subfield><subfield code="b">designing next-generation machine intelligence algorithms</subfield><subfield code="c">Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Designing next-generation machine intelligence algorithms</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Incorporated</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (390 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buduma, Nikhil</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papa, Joe</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Locascio, Nicholas</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781492082187</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781492082187</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492082170/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-063079682
illustrated Not Illustrated
indexdate 2024-12-18T08:47:08Z
institution BVB
isbn 9781492082156
1492082155
9781492082132
1492082139
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (390 pages)
psigel ZDB-30-ORH
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher O'Reilly Media, Incorporated
record_format marc
spelling Buduma, Nithin VerfasserIn aut
Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio
Designing next-generation machine intelligence algorithms
Second edition.
Sebastopol, CA O'Reilly Media, Incorporated [2022]
1 online resource (390 pages)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022)
We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning.
Artificial intelligence
Machine learning
Neural networks (Computer science)
Intelligence artificielle
Apprentissage automatique
Réseaux neuronaux (Informatique)
artificial intelligence
Buduma, Nikhil VerfasserIn aut
Papa, Joe VerfasserIn aut
Locascio, Nicholas MitwirkendeR ctb
9781492082187
Erscheint auch als Druck-Ausgabe 9781492082187
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781492082170/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Buduma, Nithin
Buduma, Nikhil
Papa, Joe
Fundamentals of deep learning designing next-generation machine intelligence algorithms
Artificial intelligence
Machine learning
Neural networks (Computer science)
Intelligence artificielle
Apprentissage automatique
Réseaux neuronaux (Informatique)
artificial intelligence
title Fundamentals of deep learning designing next-generation machine intelligence algorithms
title_alt Designing next-generation machine intelligence algorithms
title_auth Fundamentals of deep learning designing next-generation machine intelligence algorithms
title_exact_search Fundamentals of deep learning designing next-generation machine intelligence algorithms
title_full Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio
title_fullStr Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio
title_full_unstemmed Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio
title_short Fundamentals of deep learning
title_sort fundamentals of deep learning designing next generation machine intelligence algorithms
title_sub designing next-generation machine intelligence algorithms
topic Artificial intelligence
Machine learning
Neural networks (Computer science)
Intelligence artificielle
Apprentissage automatique
Réseaux neuronaux (Informatique)
artificial intelligence
topic_facet Artificial intelligence
Machine learning
Neural networks (Computer science)
Intelligence artificielle
Apprentissage automatique
Réseaux neuronaux (Informatique)
artificial intelligence
url https://learning.oreilly.com/library/view/-/9781492082170/?ar
work_keys_str_mv AT budumanithin fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms
AT budumanikhil fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms
AT papajoe fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms
AT locascionicholas fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms
AT budumanithin designingnextgenerationmachineintelligencealgorithms
AT budumanikhil designingnextgenerationmachineintelligencealgorithms
AT papajoe designingnextgenerationmachineintelligencealgorithms
AT locascionicholas designingnextgenerationmachineintelligencealgorithms