Fundamentals of deep learning designing next-generation machine intelligence algorithms
We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But decipher...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Incorporated
[2022]
|
Ausgabe: | Second edition. |
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-063079682 | ||
003 | DE-627-1 | ||
005 | 20240228121706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210427s2022 xx |||||o 00| ||eng c | ||
020 | |a 9781492082156 |c electronic book |9 978-1-4920-8215-6 | ||
020 | |a 1492082155 |c electronic book |9 1-4920-8215-5 | ||
020 | |a 9781492082132 |c electronic bk. |9 978-1-4920-8213-2 | ||
020 | |a 1492082139 |c electronic bk. |9 1-4920-8213-9 | ||
035 | |a (DE-627-1)063079682 | ||
035 | |a (DE-599)KEP063079682 | ||
035 | |a (ORHE)9781492082170 | ||
035 | |a (DE-627-1)063079682 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20220525 | |
100 | 1 | |a Buduma, Nithin |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Fundamentals of deep learning |b designing next-generation machine intelligence algorithms |c Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio |
246 | 3 | 3 | |a Designing next-generation machine intelligence algorithms |
250 | |a Second edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Incorporated |c [2022] | |
300 | |a 1 online resource (390 pages) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022) | ||
520 | |a We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning. | ||
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Neural networks (Computer science) | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
700 | 1 | |a Buduma, Nikhil |e VerfasserIn |4 aut | |
700 | 1 | |a Papa, Joe |e VerfasserIn |4 aut | |
700 | 1 | |a Locascio, Nicholas |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781492082187 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781492082187 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492082170/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-063079682 |
---|---|
_version_ | 1818767265909178369 |
adam_text | |
any_adam_object | |
author | Buduma, Nithin Buduma, Nikhil Papa, Joe |
author2 | Locascio, Nicholas |
author2_role | ctb |
author2_variant | n l nl |
author_facet | Buduma, Nithin Buduma, Nikhil Papa, Joe Locascio, Nicholas |
author_role | aut aut aut |
author_sort | Buduma, Nithin |
author_variant | n b nb n b nb j p jp |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)063079682 (DE-599)KEP063079682 (ORHE)9781492082170 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03580cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-063079682</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210427s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082156</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-8215-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492082155</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-8215-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082132</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4920-8213-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492082139</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4920-8213-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063079682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063079682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492082170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063079682</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20220525</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buduma, Nithin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of deep learning</subfield><subfield code="b">designing next-generation machine intelligence algorithms</subfield><subfield code="c">Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Designing next-generation machine intelligence algorithms</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Incorporated</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (390 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buduma, Nikhil</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papa, Joe</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Locascio, Nicholas</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781492082187</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781492082187</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492082170/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-063079682 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:47:08Z |
institution | BVB |
isbn | 9781492082156 1492082155 9781492082132 1492082139 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (390 pages) |
psigel | ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Incorporated |
record_format | marc |
spelling | Buduma, Nithin VerfasserIn aut Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio Designing next-generation machine intelligence algorithms Second edition. Sebastopol, CA O'Reilly Media, Incorporated [2022] 1 online resource (390 pages) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier First edition: 2017. - Includes bibliographical references and index. - Online resource; title from digital title page (viewed on July 07, 2022) We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning. Artificial intelligence Machine learning Neural networks (Computer science) Intelligence artificielle Apprentissage automatique Réseaux neuronaux (Informatique) artificial intelligence Buduma, Nikhil VerfasserIn aut Papa, Joe VerfasserIn aut Locascio, Nicholas MitwirkendeR ctb 9781492082187 Erscheint auch als Druck-Ausgabe 9781492082187 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781492082170/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Buduma, Nithin Buduma, Nikhil Papa, Joe Fundamentals of deep learning designing next-generation machine intelligence algorithms Artificial intelligence Machine learning Neural networks (Computer science) Intelligence artificielle Apprentissage automatique Réseaux neuronaux (Informatique) artificial intelligence |
title | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_alt | Designing next-generation machine intelligence algorithms |
title_auth | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_exact_search | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_full | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio |
title_fullStr | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio |
title_full_unstemmed | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa ; with contributions by Nicholas Locascio |
title_short | Fundamentals of deep learning |
title_sort | fundamentals of deep learning designing next generation machine intelligence algorithms |
title_sub | designing next-generation machine intelligence algorithms |
topic | Artificial intelligence Machine learning Neural networks (Computer science) Intelligence artificielle Apprentissage automatique Réseaux neuronaux (Informatique) artificial intelligence |
topic_facet | Artificial intelligence Machine learning Neural networks (Computer science) Intelligence artificielle Apprentissage automatique Réseaux neuronaux (Informatique) artificial intelligence |
url | https://learning.oreilly.com/library/view/-/9781492082170/?ar |
work_keys_str_mv | AT budumanithin fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT budumanikhil fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT papajoe fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT locascionicholas fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT budumanithin designingnextgenerationmachineintelligencealgorithms AT budumanikhil designingnextgenerationmachineintelligencealgorithms AT papajoe designingnextgenerationmachineintelligencealgorithms AT locascionicholas designingnextgenerationmachineintelligencealgorithms |