Near rings, fuzzy ideals, and graph theory

"'Nearrings, Fuzzy Ideals and Graph Theory' is a very fascinating course to learn and show. Nearring Theory has enormous applications in different subject areas like digital computing, sequential mechanics, automata theory, graph theory and combinatorics. The first step towards nearri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Satyanarayana, Bhavanari (VerfasserIn), Prasad, Kuncham Syam (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton CRC Press [2013]
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-059851848
003 DE-627-1
005 20240228115240.0
007 cr uuu---uuuuu
008 201119s2013 xx |||||o 00| ||eng c
020 |a 9781439873113  |c electronic bk.  |9 978-1-4398-7311-3 
020 |a 1439873119  |c electronic bk.  |9 1-4398-7311-9 
020 |a 9781299703575  |c MyiLibrary  |9 978-1-299-70357-5 
020 |a 1299703577  |c MyiLibrary  |9 1-299-70357-7 
035 |a (DE-627-1)059851848 
035 |a (DE-599)KEP059851848 
035 |a (ORHE)9781439873113 
035 |a (DE-627-1)059851848 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a MAT  |2 bisacsh 
082 0 |a 512.4  |2 23 
100 1 |a Satyanarayana, Bhavanari  |e VerfasserIn  |4 aut 
245 1 0 |a Near rings, fuzzy ideals, and graph theory  |c Bhavanari Satyanarayana and Kuncham Syam Prasad 
264 1 |a Boca Raton  |b CRC Press  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xi, 468 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Online resource 
520 |a "'Nearrings, Fuzzy Ideals and Graph Theory' is a very fascinating course to learn and show. Nearring Theory has enormous applications in different subject areas like digital computing, sequential mechanics, automata theory, graph theory and combinatorics. The first step towards nearrings was an axiomatic research done by Dickson in 1905. He exhibited that there do exist "fields with only one distributive law". Nearrings arise in a natural way, take the set M(G) of all mappings of a group (G, +) into itself, define addition '+' and point-wisely and 'o' as composition of mappings. Another example is that set of all polynomials with addition and substitution"-- 
650 0 |a Near-rings 
650 0 |a Fuzzy sets 
650 0 |a Graph theory 
650 4 |a Presque-anneaux 
650 4 |a Ensembles flous 
650 4 |a COMPUTERS ; Operating Systems ; General 
650 4 |a MATHEMATICS ; Algebra ; General 
650 4 |a MATHEMATICS ; Combinatorics 
650 4 |a MATHEMATICS ; Algebra ; Intermediate 
650 4 |a Fuzzy sets 
650 4 |a Graph theory 
650 4 |a Near-rings 
700 1 |a Prasad, Kuncham Syam  |e VerfasserIn  |4 aut 
776 1 |z 9781439873106 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781439873106 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781439873113/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-059851848
_version_ 1818767267621502976
adam_text
any_adam_object
author Satyanarayana, Bhavanari
Prasad, Kuncham Syam
author_facet Satyanarayana, Bhavanari
Prasad, Kuncham Syam
author_role aut
aut
author_sort Satyanarayana, Bhavanari
author_variant b s bs
k s p ks ksp
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)059851848
(DE-599)KEP059851848
(ORHE)9781439873113
dewey-full 512.4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.4
dewey-search 512.4
dewey-sort 3512.4
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02642cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-059851848</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115240.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201119s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439873113</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4398-7311-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439873119</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4398-7311-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299703575</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">978-1-299-70357-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299703577</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">1-299-70357-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059851848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP059851848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781439873113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059851848</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Satyanarayana, Bhavanari</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near rings, fuzzy ideals, and graph theory</subfield><subfield code="c">Bhavanari Satyanarayana and Kuncham Syam Prasad</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 468 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"'Nearrings, Fuzzy Ideals and Graph Theory' is a very fascinating course to learn and show. Nearring Theory has enormous applications in different subject areas like digital computing, sequential mechanics, automata theory, graph theory and combinatorics. The first step towards nearrings was an axiomatic research done by Dickson in 1905. He exhibited that there do exist "fields with only one distributive law". Nearrings arise in a natural way, take the set M(G) of all mappings of a group (G, +) into itself, define addition '+' and point-wisely and 'o' as composition of mappings. Another example is that set of all polynomials with addition and substitution"--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Near-rings</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Presque-anneaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles flous</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Operating Systems ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Algebra ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Algebra ; Intermediate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-rings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Kuncham Syam</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781439873106</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781439873106</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781439873113/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-059851848
illustrated Illustrated
indexdate 2024-12-18T08:47:10Z
institution BVB
isbn 9781439873113
1439873119
9781299703575
1299703577
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (xi, 468 pages) illustrations
psigel ZDB-30-ORH
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher CRC Press
record_format marc
spelling Satyanarayana, Bhavanari VerfasserIn aut
Near rings, fuzzy ideals, and graph theory Bhavanari Satyanarayana and Kuncham Syam Prasad
Boca Raton CRC Press [2013]
©2013
1 online resource (xi, 468 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Online resource
"'Nearrings, Fuzzy Ideals and Graph Theory' is a very fascinating course to learn and show. Nearring Theory has enormous applications in different subject areas like digital computing, sequential mechanics, automata theory, graph theory and combinatorics. The first step towards nearrings was an axiomatic research done by Dickson in 1905. He exhibited that there do exist "fields with only one distributive law". Nearrings arise in a natural way, take the set M(G) of all mappings of a group (G, +) into itself, define addition '+' and point-wisely and 'o' as composition of mappings. Another example is that set of all polynomials with addition and substitution"--
Near-rings
Fuzzy sets
Graph theory
Presque-anneaux
Ensembles flous
COMPUTERS ; Operating Systems ; General
MATHEMATICS ; Algebra ; General
MATHEMATICS ; Combinatorics
MATHEMATICS ; Algebra ; Intermediate
Prasad, Kuncham Syam VerfasserIn aut
9781439873106
Erscheint auch als Druck-Ausgabe 9781439873106
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781439873113/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Satyanarayana, Bhavanari
Prasad, Kuncham Syam
Near rings, fuzzy ideals, and graph theory
Near-rings
Fuzzy sets
Graph theory
Presque-anneaux
Ensembles flous
COMPUTERS ; Operating Systems ; General
MATHEMATICS ; Algebra ; General
MATHEMATICS ; Combinatorics
MATHEMATICS ; Algebra ; Intermediate
title Near rings, fuzzy ideals, and graph theory
title_auth Near rings, fuzzy ideals, and graph theory
title_exact_search Near rings, fuzzy ideals, and graph theory
title_full Near rings, fuzzy ideals, and graph theory Bhavanari Satyanarayana and Kuncham Syam Prasad
title_fullStr Near rings, fuzzy ideals, and graph theory Bhavanari Satyanarayana and Kuncham Syam Prasad
title_full_unstemmed Near rings, fuzzy ideals, and graph theory Bhavanari Satyanarayana and Kuncham Syam Prasad
title_short Near rings, fuzzy ideals, and graph theory
title_sort near rings fuzzy ideals and graph theory
topic Near-rings
Fuzzy sets
Graph theory
Presque-anneaux
Ensembles flous
COMPUTERS ; Operating Systems ; General
MATHEMATICS ; Algebra ; General
MATHEMATICS ; Combinatorics
MATHEMATICS ; Algebra ; Intermediate
topic_facet Near-rings
Fuzzy sets
Graph theory
Presque-anneaux
Ensembles flous
COMPUTERS ; Operating Systems ; General
MATHEMATICS ; Algebra ; General
MATHEMATICS ; Combinatorics
MATHEMATICS ; Algebra ; Intermediate
url https://learning.oreilly.com/library/view/-/9781439873113/?ar
work_keys_str_mv AT satyanarayanabhavanari nearringsfuzzyidealsandgraphtheory
AT prasadkunchamsyam nearringsfuzzyidealsandgraphtheory