Support vector machines and their application in chemistry and biotechnology

"Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicochemical and biological systems. It is of growing interest to chemists and has been applied to problems in such areas as food quality control, chem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Liang, Yizeng (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton, FL CRC Press 2011
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-051701243
003 DE-627-1
005 20240228114741.0
007 cr uuu---uuuuu
008 200417s2011 xx |||||o 00| ||eng c
020 |a 9781439821282  |c electronic bk.  |9 978-1-4398-2128-2 
020 |a 1439821283  |c electronic bk.  |9 1-4398-2128-3 
035 |a (DE-627-1)051701243 
035 |a (DE-599)KEP051701243 
035 |a (ORHE)9781439821282 
035 |a (DE-627-1)051701243 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a SCI  |2 bisacsh 
082 0 |a 542/.85  |2 22 
245 1 0 |a Support vector machines and their application in chemistry and biotechnology  |c Yizeng Liang [and others] 
264 1 |a Boca Raton, FL  |b CRC Press  |c 2011 
300 |a 1 online resource (x, 193 pages) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Print version record 
520 |a "Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicochemical and biological systems. It is of growing interest to chemists and has been applied to problems in such areas as food quality control, chemical reaction monitoring, metabolite analysis, QSAR/QSPR, and toxicity. This book presents the theory of SVMs in a way that is easy to understand regardless of mathematical background. It includes simple examples of chemical and OMICS data to demonstrate the performance of SVMs and compares SVMs to other traditional classification/regression methods"-- 
520 |a "Support vector machines (SVMs) seem a very promising kernel-based machine learning method originally developed for pattern recognition and later extended to multivariate regression. What distinguishes SVMs from traditional learning methods lies in its exclusive objective function, which minimizes the structural risk of the model. The introduction of the kernel function into SVMs made it extremely attractive, since it opens a new door for chemists/biologists to use SVMs to solve difficult nonlinear problems in chemistry and biotechnology through the simple linear transformation technique. The distinctive features and excellent empirical performances of SVMs have drawn the eyes of chemists and biologists so much that a number of papers, mainly concerned with the applications of SVMs, have been published in chemistry and biotechnology in recent years. These applications cover a large scope of chemical and/or biological meaningful problems, e.g. spectral calibration, drug design, quantitative structure-activity/property relationship (QSAR/QSPR), food quality control, chemical reaction monitoring, metabolic fingerprint analysis, protein structure and function prediction, microarray data-based cancer classification and so on. However, in order to efficiently apply this rather new technique to solve difficult problems in chemistry and biotechnology, one should have a sound in-depth understanding of what kind information this new mathematical tool could really provide and what its statistic property is. This book aims at giving a deeper and more thorough description of the mechanism of SVMs from the point of view of chemists/biologists and hence to make it easy for chemists and biologists to understand"-- 
650 0 |a Support vector machines 
650 0 |a Chemometrics 
650 0 |a Chemistry 
650 0 |a Linear programming 
650 2 |a Chemistry 
650 2 |a Biotechnology 
650 2 |a Programming, Linear 
650 4 |a Machines à vecteurs supports 
650 4 |a Chimiométrie 
650 4 |a Chimie 
650 4 |a Biotechnologie 
650 4 |a Programmation linéaire 
650 4 |a chemistry 
650 4 |a bioengineering 
650 4 |a Linear programming 
650 4 |a Chemistry 
650 4 |a Chemometrics 
650 4 |a Support vector machines 
700 1 |a Liang, Yizeng  |e MitwirkendeR  |4 ctb 
776 1 |z 9781439821275 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781439821275 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781439821282/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-051701243
_version_ 1818767272757428224
adam_text
any_adam_object
author2 Liang, Yizeng
author2_role ctb
author2_variant y l yl
author_facet Liang, Yizeng
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)051701243
(DE-599)KEP051701243
(ORHE)9781439821282
dewey-full 542/.85
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 542 - Techniques, equipment & materials
dewey-raw 542/.85
dewey-search 542/.85
dewey-sort 3542 285
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04322cam a22006132 4500</leader><controlfield tag="001">ZDB-30-ORH-051701243</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228114741.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200417s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439821282</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4398-2128-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439821283</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4398-2128-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)051701243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP051701243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781439821282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)051701243</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">542/.85</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Support vector machines and their application in chemistry and biotechnology</subfield><subfield code="c">Yizeng Liang [and others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 193 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicochemical and biological systems. It is of growing interest to chemists and has been applied to problems in such areas as food quality control, chemical reaction monitoring, metabolite analysis, QSAR/QSPR, and toxicity. This book presents the theory of SVMs in a way that is easy to understand regardless of mathematical background. It includes simple examples of chemical and OMICS data to demonstrate the performance of SVMs and compares SVMs to other traditional classification/regression methods"--</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Support vector machines (SVMs) seem a very promising kernel-based machine learning method originally developed for pattern recognition and later extended to multivariate regression. What distinguishes SVMs from traditional learning methods lies in its exclusive objective function, which minimizes the structural risk of the model. The introduction of the kernel function into SVMs made it extremely attractive, since it opens a new door for chemists/biologists to use SVMs to solve difficult nonlinear problems in chemistry and biotechnology through the simple linear transformation technique. The distinctive features and excellent empirical performances of SVMs have drawn the eyes of chemists and biologists so much that a number of papers, mainly concerned with the applications of SVMs, have been published in chemistry and biotechnology in recent years. These applications cover a large scope of chemical and/or biological meaningful problems, e.g. spectral calibration, drug design, quantitative structure-activity/property relationship (QSAR/QSPR), food quality control, chemical reaction monitoring, metabolic fingerprint analysis, protein structure and function prediction, microarray data-based cancer classification and so on. However, in order to efficiently apply this rather new technique to solve difficult problems in chemistry and biotechnology, one should have a sound in-depth understanding of what kind information this new mathematical tool could really provide and what its statistic property is. This book aims at giving a deeper and more thorough description of the mechanism of SVMs from the point of view of chemists/biologists and hence to make it easy for chemists and biologists to understand"--</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Support vector machines</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Programming, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machines à vecteurs supports</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chimiométrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chimie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmation linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioengineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support vector machines</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Yizeng</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781439821275</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781439821275</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781439821282/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-051701243
illustrated Not Illustrated
indexdate 2024-12-18T08:47:15Z
institution BVB
isbn 9781439821282
1439821283
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (x, 193 pages)
psigel ZDB-30-ORH
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher CRC Press
record_format marc
spelling Support vector machines and their application in chemistry and biotechnology Yizeng Liang [and others]
Boca Raton, FL CRC Press 2011
1 online resource (x, 193 pages)
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Print version record
"Support vector machines (SVMs), a promising machine learning method, is a powerful tool for chemical data analysis and for modeling complex physicochemical and biological systems. It is of growing interest to chemists and has been applied to problems in such areas as food quality control, chemical reaction monitoring, metabolite analysis, QSAR/QSPR, and toxicity. This book presents the theory of SVMs in a way that is easy to understand regardless of mathematical background. It includes simple examples of chemical and OMICS data to demonstrate the performance of SVMs and compares SVMs to other traditional classification/regression methods"--
"Support vector machines (SVMs) seem a very promising kernel-based machine learning method originally developed for pattern recognition and later extended to multivariate regression. What distinguishes SVMs from traditional learning methods lies in its exclusive objective function, which minimizes the structural risk of the model. The introduction of the kernel function into SVMs made it extremely attractive, since it opens a new door for chemists/biologists to use SVMs to solve difficult nonlinear problems in chemistry and biotechnology through the simple linear transformation technique. The distinctive features and excellent empirical performances of SVMs have drawn the eyes of chemists and biologists so much that a number of papers, mainly concerned with the applications of SVMs, have been published in chemistry and biotechnology in recent years. These applications cover a large scope of chemical and/or biological meaningful problems, e.g. spectral calibration, drug design, quantitative structure-activity/property relationship (QSAR/QSPR), food quality control, chemical reaction monitoring, metabolic fingerprint analysis, protein structure and function prediction, microarray data-based cancer classification and so on. However, in order to efficiently apply this rather new technique to solve difficult problems in chemistry and biotechnology, one should have a sound in-depth understanding of what kind information this new mathematical tool could really provide and what its statistic property is. This book aims at giving a deeper and more thorough description of the mechanism of SVMs from the point of view of chemists/biologists and hence to make it easy for chemists and biologists to understand"--
Support vector machines
Chemometrics
Chemistry
Linear programming
Biotechnology
Programming, Linear
Machines à vecteurs supports
Chimiométrie
Chimie
Biotechnologie
Programmation linéaire
chemistry
bioengineering
Liang, Yizeng MitwirkendeR ctb
9781439821275
Erscheint auch als Druck-Ausgabe 9781439821275
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781439821282/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Support vector machines and their application in chemistry and biotechnology
Support vector machines
Chemometrics
Chemistry
Linear programming
Biotechnology
Programming, Linear
Machines à vecteurs supports
Chimiométrie
Chimie
Biotechnologie
Programmation linéaire
chemistry
bioengineering
title Support vector machines and their application in chemistry and biotechnology
title_auth Support vector machines and their application in chemistry and biotechnology
title_exact_search Support vector machines and their application in chemistry and biotechnology
title_full Support vector machines and their application in chemistry and biotechnology Yizeng Liang [and others]
title_fullStr Support vector machines and their application in chemistry and biotechnology Yizeng Liang [and others]
title_full_unstemmed Support vector machines and their application in chemistry and biotechnology Yizeng Liang [and others]
title_short Support vector machines and their application in chemistry and biotechnology
title_sort support vector machines and their application in chemistry and biotechnology
topic Support vector machines
Chemometrics
Chemistry
Linear programming
Biotechnology
Programming, Linear
Machines à vecteurs supports
Chimiométrie
Chimie
Biotechnologie
Programmation linéaire
chemistry
bioengineering
topic_facet Support vector machines
Chemometrics
Chemistry
Linear programming
Biotechnology
Programming, Linear
Machines à vecteurs supports
Chimiométrie
Chimie
Biotechnologie
Programmation linéaire
chemistry
bioengineering
url https://learning.oreilly.com/library/view/-/9781439821282/?ar
work_keys_str_mv AT liangyizeng supportvectormachinesandtheirapplicationinchemistryandbiotechnology