Learning Spark, 2nd Edition

Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.x., this second edition show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Damji, Jules (VerfasserIn), Lee, Denny (VerfasserIn), Wenig, Brooke (VerfasserIn), Das, Tathagata (VerfasserIn)
Körperschaft: Safari, an O'Reilly Media Company (MitwirkendeR)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2020
Ausgabe:2nd edition.
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.x., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering.
Beschreibung:Online resource; Title from title page (viewed January 25, 2020)
Beschreibung:1 online resource (300 pages)