Foundations of deep reinforcement learning theory and practice in Python
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achiev...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston
Addison-Wesley
[2020]
|
Ausgabe: | First edition. |
Schriftenreihe: | Addison-Wesley data & analytics series
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048548456 | ||
003 | DE-627-1 | ||
005 | 20240228120946.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2020 xx |||||o 00| ||eng c | ||
020 | |a 9780135172490 |9 978-0-13-517249-0 | ||
020 | |a 0135172497 |9 0-13-517249-7 | ||
035 | |a (DE-627-1)048548456 | ||
035 | |a (DE-599)KEP048548456 | ||
035 | |a (ORHE)9780135172490 | ||
035 | |a (DE-627-1)048548456 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 |2 23/eng/20231120 | |
100 | 1 | |a Graesser, Laura |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Foundations of deep reinforcement learning |b theory and practice in Python |c Laura Graesser, Wah Loon Keng |
250 | |a First edition. | ||
264 | 1 | |a Boston |b Addison-Wesley |c [2020] | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (1 volume) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Addison-Wesley data & analytics series | |
500 | |a Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020) | ||
520 | |a The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Reinforcement learning | |
650 | 0 | |a Neural networks (Computer science) | |
650 | 0 | |a Artificial intelligence | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Apprentissage par renforcement (Intelligence artificielle) | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Reinforcement learning | |
700 | 1 | |a Keng, Wah Loon |e VerfasserIn |4 aut | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780135172490/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048548456 |
---|---|
_version_ | 1818767284010745856 |
adam_text | |
any_adam_object | |
author | Graesser, Laura Keng, Wah Loon |
author_facet | Graesser, Laura Keng, Wah Loon |
author_role | aut aut |
author_sort | Graesser, Laura |
author_variant | l g lg w l k wl wlk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048548456 (DE-599)KEP048548456 (ORHE)9780135172490 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03807cam a22005892 4500</leader><controlfield tag="001">ZDB-30-ORH-048548456</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780135172490</subfield><subfield code="9">978-0-13-517249-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0135172497</subfield><subfield code="9">0-13-517249-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048548456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048548456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780135172490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048548456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23/eng/20231120</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graesser, Laura</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of deep reinforcement learning</subfield><subfield code="b">theory and practice in Python</subfield><subfield code="c">Laura Graesser, Wah Loon Keng</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Addison-Wesley</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Addison-Wesley data & analytics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage par renforcement (Intelligence artificielle)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keng, Wah Loon</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780135172490/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048548456 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:47:26Z |
institution | BVB |
isbn | 9780135172490 0135172497 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 volume) illustrations |
psigel | ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Addison-Wesley |
record_format | marc |
series2 | Addison-Wesley data & analytics series |
spelling | Graesser, Laura VerfasserIn aut Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng First edition. Boston Addison-Wesley [2020] ©2020 1 online resource (1 volume) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Addison-Wesley data & analytics series Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020) The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. Python (Computer program language) Machine learning Reinforcement learning Neural networks (Computer science) Artificial intelligence Python (Langage de programmation) Apprentissage automatique Apprentissage par renforcement (Intelligence artificielle) Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence Keng, Wah Loon VerfasserIn aut TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780135172490/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Graesser, Laura Keng, Wah Loon Foundations of deep reinforcement learning theory and practice in Python Python (Computer program language) Machine learning Reinforcement learning Neural networks (Computer science) Artificial intelligence Python (Langage de programmation) Apprentissage automatique Apprentissage par renforcement (Intelligence artificielle) Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
title | Foundations of deep reinforcement learning theory and practice in Python |
title_auth | Foundations of deep reinforcement learning theory and practice in Python |
title_exact_search | Foundations of deep reinforcement learning theory and practice in Python |
title_full | Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng |
title_fullStr | Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng |
title_full_unstemmed | Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng |
title_short | Foundations of deep reinforcement learning |
title_sort | foundations of deep reinforcement learning theory and practice in python |
title_sub | theory and practice in Python |
topic | Python (Computer program language) Machine learning Reinforcement learning Neural networks (Computer science) Artificial intelligence Python (Langage de programmation) Apprentissage automatique Apprentissage par renforcement (Intelligence artificielle) Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
topic_facet | Python (Computer program language) Machine learning Reinforcement learning Neural networks (Computer science) Artificial intelligence Python (Langage de programmation) Apprentissage automatique Apprentissage par renforcement (Intelligence artificielle) Réseaux neuronaux (Informatique) Intelligence artificielle artificial intelligence |
url | https://learning.oreilly.com/library/view/-/9780135172490/?ar |
work_keys_str_mv | AT graesserlaura foundationsofdeepreinforcementlearningtheoryandpracticeinpython AT kengwahloon foundationsofdeepreinforcementlearningtheoryandpracticeinpython |