Foundations of deep reinforcement learning theory and practice in Python

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Graesser, Laura (VerfasserIn), Keng, Wah Loon (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston Addison-Wesley [2020]
Ausgabe:First edition.
Schriftenreihe:Addison-Wesley data & analytics series
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-048548456
003 DE-627-1
005 20240228120946.0
007 cr uuu---uuuuu
008 191206s2020 xx |||||o 00| ||eng c
020 |a 9780135172490  |9 978-0-13-517249-0 
020 |a 0135172497  |9 0-13-517249-7 
035 |a (DE-627-1)048548456 
035 |a (DE-599)KEP048548456 
035 |a (ORHE)9780135172490 
035 |a (DE-627-1)048548456 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 006.31  |2 23/eng/20231120 
100 1 |a Graesser, Laura  |e VerfasserIn  |4 aut 
245 1 0 |a Foundations of deep reinforcement learning  |b theory and practice in Python  |c Laura Graesser, Wah Loon Keng 
250 |a First edition. 
264 1 |a Boston  |b Addison-Wesley  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (1 volume)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Addison-Wesley data & analytics series 
500 |a Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020) 
520 |a The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning 
650 0 |a Reinforcement learning 
650 0 |a Neural networks (Computer science) 
650 0 |a Artificial intelligence 
650 4 |a Python (Langage de programmation) 
650 4 |a Apprentissage automatique 
650 4 |a Apprentissage par renforcement (Intelligence artificielle) 
650 4 |a Réseaux neuronaux (Informatique) 
650 4 |a Intelligence artificielle 
650 4 |a artificial intelligence 
650 4 |a Artificial intelligence 
650 4 |a Machine learning 
650 4 |a Neural networks (Computer science) 
650 4 |a Python (Computer program language) 
650 4 |a Reinforcement learning 
700 1 |a Keng, Wah Loon  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9780135172490/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-048548456
_version_ 1818767284010745856
adam_text
any_adam_object
author Graesser, Laura
Keng, Wah Loon
author_facet Graesser, Laura
Keng, Wah Loon
author_role aut
aut
author_sort Graesser, Laura
author_variant l g lg
w l k wl wlk
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)048548456
(DE-599)KEP048548456
(ORHE)9780135172490
dewey-full 006.31
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.31
dewey-search 006.31
dewey-sort 16.31
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition First edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03807cam a22005892 4500</leader><controlfield tag="001">ZDB-30-ORH-048548456</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780135172490</subfield><subfield code="9">978-0-13-517249-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0135172497</subfield><subfield code="9">0-13-517249-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048548456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048548456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780135172490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048548456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23/eng/20231120</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graesser, Laura</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of deep reinforcement learning</subfield><subfield code="b">theory and practice in Python</subfield><subfield code="c">Laura Graesser, Wah Loon Keng</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Addison-Wesley</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Addison-Wesley data &amp; analytics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage par renforcement (Intelligence artificielle)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keng, Wah Loon</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780135172490/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-048548456
illustrated Illustrated
indexdate 2024-12-18T08:47:26Z
institution BVB
isbn 9780135172490
0135172497
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 volume) illustrations
psigel ZDB-30-ORH
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Addison-Wesley
record_format marc
series2 Addison-Wesley data & analytics series
spelling Graesser, Laura VerfasserIn aut
Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng
First edition.
Boston Addison-Wesley [2020]
©2020
1 online resource (1 volume) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Addison-Wesley data & analytics series
Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed January 29, 2020)
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Python (Computer program language)
Machine learning
Reinforcement learning
Neural networks (Computer science)
Artificial intelligence
Python (Langage de programmation)
Apprentissage automatique
Apprentissage par renforcement (Intelligence artificielle)
Réseaux neuronaux (Informatique)
Intelligence artificielle
artificial intelligence
Keng, Wah Loon VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780135172490/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Graesser, Laura
Keng, Wah Loon
Foundations of deep reinforcement learning theory and practice in Python
Python (Computer program language)
Machine learning
Reinforcement learning
Neural networks (Computer science)
Artificial intelligence
Python (Langage de programmation)
Apprentissage automatique
Apprentissage par renforcement (Intelligence artificielle)
Réseaux neuronaux (Informatique)
Intelligence artificielle
artificial intelligence
title Foundations of deep reinforcement learning theory and practice in Python
title_auth Foundations of deep reinforcement learning theory and practice in Python
title_exact_search Foundations of deep reinforcement learning theory and practice in Python
title_full Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng
title_fullStr Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng
title_full_unstemmed Foundations of deep reinforcement learning theory and practice in Python Laura Graesser, Wah Loon Keng
title_short Foundations of deep reinforcement learning
title_sort foundations of deep reinforcement learning theory and practice in python
title_sub theory and practice in Python
topic Python (Computer program language)
Machine learning
Reinforcement learning
Neural networks (Computer science)
Artificial intelligence
Python (Langage de programmation)
Apprentissage automatique
Apprentissage par renforcement (Intelligence artificielle)
Réseaux neuronaux (Informatique)
Intelligence artificielle
artificial intelligence
topic_facet Python (Computer program language)
Machine learning
Reinforcement learning
Neural networks (Computer science)
Artificial intelligence
Python (Langage de programmation)
Apprentissage automatique
Apprentissage par renforcement (Intelligence artificielle)
Réseaux neuronaux (Informatique)
Intelligence artificielle
artificial intelligence
url https://learning.oreilly.com/library/view/-/9780135172490/?ar
work_keys_str_mv AT graesserlaura foundationsofdeepreinforcementlearningtheoryandpracticeinpython
AT kengwahloon foundationsofdeepreinforcementlearningtheoryandpracticeinpython