Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines

A presentation from the Strata Data 2017 London conference.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gonzalez-Fierro, Miguel (VerfasserIn)
Format: Elektronisch Video
Sprache:English
Veröffentlicht: [Place of publication not identified] O'Reilly Media [2017]
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cgm a22000002 4500
001 ZDB-30-ORH-047628219
003 DE-627-1
005 20240228120531.0
006 m o | |
007 cr uuu---uuuuu
008 191023s2017 xx ||| |o o ||eng c
035 |a (DE-627-1)047628219 
035 |a (DE-599)KEP047628219 
035 |a (ORHE)9781492037316 
035 |a (DE-627-1)047628219 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Gonzalez-Fierro, Miguel  |e VerfasserIn  |4 aut 
245 1 0 |a Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines  |c Miguel Gonzalez-Fierro 
264 1 |a [Place of publication not identified]  |b O'Reilly Media  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (1 streaming video file (38 min., 5 sec.)) 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed July 12, 2018) 
520 |a A presentation from the Strata Data 2017 London conference. 
520 |a "Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page. 
611 2 0 |a Strata Data Conference  |c London, Great Britain)  |d (2017 
650 0 |a Neural networks (Computer science) 
650 0 |a Big data 
650 0 |a Ubiquitous computing 
650 0 |a Data mining 
650 2 |a Neural Networks, Computer 
650 2 |a Data Mining 
650 4 |a Réseaux neuronaux (Informatique) 
650 4 |a Données volumineuses 
650 4 |a Informatique omniprésente 
650 4 |a Exploration de données (Informatique) 
650 4 |a Big data  |0 (OCoLC)fst01892965 
650 4 |a Data mining  |0 (OCoLC)fst00887946 
650 4 |a Neural networks (Computer science)  |0 (OCoLC)fst01036260 
650 4 |a Ubiquitous computing  |0 (OCoLC)fst01160283 
650 4 |a Electronic videos 
710 2 |a O'Reilly & Associates,  |e Verlag  |4 pbl 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781492037316/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
935 |c vide 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-047628219
_version_ 1818767389923213312
adam_text
any_adam_object
author Gonzalez-Fierro, Miguel
author_facet Gonzalez-Fierro, Miguel
author_role aut
author_sort Gonzalez-Fierro, Miguel
author_variant m g f mgf
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)047628219
(DE-599)KEP047628219
(ORHE)9781492037316
format Electronic
Video
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02516cgm a22005532 4500</leader><controlfield tag="001">ZDB-30-ORH-047628219</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120531.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047628219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047628219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492037316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047628219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonzalez-Fierro, Miguel</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines</subfield><subfield code="c">Miguel Gonzalez-Fierro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 streaming video file (38 min., 5 sec.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from title screen (viewed July 12, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A presentation from the Strata Data 2017 London conference.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page.</subfield></datafield><datafield tag="611" ind1="2" ind2="0"><subfield code="a">Strata Data Conference</subfield><subfield code="c">London, Great Britain)</subfield><subfield code="d">(2017</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ubiquitous computing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique omniprésente</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield><subfield code="0">(OCoLC)fst01892965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield><subfield code="0">(OCoLC)fst00887946</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">(OCoLC)fst01036260</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitous computing</subfield><subfield code="0">(OCoLC)fst01160283</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic videos</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly &amp; Associates,</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492037316/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-047628219
illustrated Not Illustrated
indexdate 2024-12-18T08:49:07Z
institution BVB
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 streaming video file (38 min., 5 sec.))
psigel ZDB-30-ORH
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher O'Reilly Media
record_format marc
spelling Gonzalez-Fierro, Miguel VerfasserIn aut
Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro
[Place of publication not identified] O'Reilly Media [2017]
©2017
1 online resource (1 streaming video file (38 min., 5 sec.))
zweidimensionales bewegtes Bild tdi rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Title from title screen (viewed July 12, 2018)
A presentation from the Strata Data 2017 London conference.
"Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page.
Strata Data Conference London, Great Britain) (2017
Neural networks (Computer science)
Big data
Ubiquitous computing
Data mining
Neural Networks, Computer
Data Mining
Réseaux neuronaux (Informatique)
Données volumineuses
Informatique omniprésente
Exploration de données (Informatique)
Big data (OCoLC)fst01892965
Data mining (OCoLC)fst00887946
Neural networks (Computer science) (OCoLC)fst01036260
Ubiquitous computing (OCoLC)fst01160283
Electronic videos
O'Reilly & Associates, Verlag pbl
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781492037316/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Gonzalez-Fierro, Miguel
Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
Strata Data Conference London, Great Britain) (2017
Neural networks (Computer science)
Big data
Ubiquitous computing
Data mining
Neural Networks, Computer
Data Mining
Réseaux neuronaux (Informatique)
Données volumineuses
Informatique omniprésente
Exploration de données (Informatique)
Big data (OCoLC)fst01892965
Data mining (OCoLC)fst00887946
Neural networks (Computer science) (OCoLC)fst01036260
Ubiquitous computing (OCoLC)fst01160283
Electronic videos
subject_GND (OCoLC)fst01892965
(OCoLC)fst00887946
(OCoLC)fst01036260
(OCoLC)fst01160283
title Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
title_auth Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
title_exact_search Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
title_full Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro
title_fullStr Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro
title_full_unstemmed Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro
title_short Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
title_sort mastering computer vision problems with state of the art deep learning architectures mxnet and gpu virtual machines
topic Strata Data Conference London, Great Britain) (2017
Neural networks (Computer science)
Big data
Ubiquitous computing
Data mining
Neural Networks, Computer
Data Mining
Réseaux neuronaux (Informatique)
Données volumineuses
Informatique omniprésente
Exploration de données (Informatique)
Big data (OCoLC)fst01892965
Data mining (OCoLC)fst00887946
Neural networks (Computer science) (OCoLC)fst01036260
Ubiquitous computing (OCoLC)fst01160283
Electronic videos
topic_facet Strata Data Conference London, Great Britain) (2017
Neural networks (Computer science)
Big data
Ubiquitous computing
Data mining
Neural Networks, Computer
Data Mining
Réseaux neuronaux (Informatique)
Données volumineuses
Informatique omniprésente
Exploration de données (Informatique)
Electronic videos
url https://learning.oreilly.com/library/view/-/9781492037316/?ar
work_keys_str_mv AT gonzalezfierromiguel masteringcomputervisionproblemswithstateoftheartdeeplearningarchitecturesmxnetandgpuvirtualmachines
AT oreillyassociates masteringcomputervisionproblemswithstateoftheartdeeplearningarchitecturesmxnetandgpuvirtualmachines