Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines
A presentation from the Strata Data 2017 London conference.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified]
O'Reilly Media
[2017]
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047628219 | ||
003 | DE-627-1 | ||
005 | 20240228120531.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)047628219 | ||
035 | |a (DE-599)KEP047628219 | ||
035 | |a (ORHE)9781492037316 | ||
035 | |a (DE-627-1)047628219 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Gonzalez-Fierro, Miguel |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines |c Miguel Gonzalez-Fierro |
264 | 1 | |a [Place of publication not identified] |b O'Reilly Media |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (1 streaming video file (38 min., 5 sec.)) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from title screen (viewed July 12, 2018) | ||
520 | |a A presentation from the Strata Data 2017 London conference. | ||
520 | |a "Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page. | ||
611 | 2 | 0 | |a Strata Data Conference |c London, Great Britain) |d (2017 |
650 | 0 | |a Neural networks (Computer science) | |
650 | 0 | |a Big data | |
650 | 0 | |a Ubiquitous computing | |
650 | 0 | |a Data mining | |
650 | 2 | |a Neural Networks, Computer | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Informatique omniprésente | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Big data |0 (OCoLC)fst01892965 | |
650 | 4 | |a Data mining |0 (OCoLC)fst00887946 | |
650 | 4 | |a Neural networks (Computer science) |0 (OCoLC)fst01036260 | |
650 | 4 | |a Ubiquitous computing |0 (OCoLC)fst01160283 | |
650 | 4 | |a Electronic videos | |
710 | 2 | |a O'Reilly & Associates, |e Verlag |4 pbl | |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492037316/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047628219 |
---|---|
_version_ | 1818767389923213312 |
adam_text | |
any_adam_object | |
author | Gonzalez-Fierro, Miguel |
author_facet | Gonzalez-Fierro, Miguel |
author_role | aut |
author_sort | Gonzalez-Fierro, Miguel |
author_variant | m g f mgf |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047628219 (DE-599)KEP047628219 (ORHE)9781492037316 |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02516cgm a22005532 4500</leader><controlfield tag="001">ZDB-30-ORH-047628219</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120531.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047628219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047628219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492037316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047628219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonzalez-Fierro, Miguel</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines</subfield><subfield code="c">Miguel Gonzalez-Fierro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 streaming video file (38 min., 5 sec.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from title screen (viewed July 12, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A presentation from the Strata Data 2017 London conference.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page.</subfield></datafield><datafield tag="611" ind1="2" ind2="0"><subfield code="a">Strata Data Conference</subfield><subfield code="c">London, Great Britain)</subfield><subfield code="d">(2017</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ubiquitous computing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique omniprésente</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield><subfield code="0">(OCoLC)fst01892965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield><subfield code="0">(OCoLC)fst00887946</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">(OCoLC)fst01036260</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitous computing</subfield><subfield code="0">(OCoLC)fst01160283</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic videos</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly & Associates,</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492037316/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047628219 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T08:49:07Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 streaming video file (38 min., 5 sec.)) |
psigel | ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Gonzalez-Fierro, Miguel VerfasserIn aut Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro [Place of publication not identified] O'Reilly Media [2017] ©2017 1 online resource (1 streaming video file (38 min., 5 sec.)) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from title screen (viewed July 12, 2018) A presentation from the Strata Data 2017 London conference. "Miguel González-Fierro explains how to train a state-of-the-art deep neural network, ResNet, using Microsoft RSever and MXNet with the ImageNet dataset. (While most of the deep learning libraries are programmed in C++ and Python, only MXNet offers an API for R programmers.) Miguel then demonstrates how to operationalize this training for real-world business problems related to image classification."--Resource description page. Strata Data Conference London, Great Britain) (2017 Neural networks (Computer science) Big data Ubiquitous computing Data mining Neural Networks, Computer Data Mining Réseaux neuronaux (Informatique) Données volumineuses Informatique omniprésente Exploration de données (Informatique) Big data (OCoLC)fst01892965 Data mining (OCoLC)fst00887946 Neural networks (Computer science) (OCoLC)fst01036260 Ubiquitous computing (OCoLC)fst01160283 Electronic videos O'Reilly & Associates, Verlag pbl TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781492037316/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Gonzalez-Fierro, Miguel Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Strata Data Conference London, Great Britain) (2017 Neural networks (Computer science) Big data Ubiquitous computing Data mining Neural Networks, Computer Data Mining Réseaux neuronaux (Informatique) Données volumineuses Informatique omniprésente Exploration de données (Informatique) Big data (OCoLC)fst01892965 Data mining (OCoLC)fst00887946 Neural networks (Computer science) (OCoLC)fst01036260 Ubiquitous computing (OCoLC)fst01160283 Electronic videos |
subject_GND | (OCoLC)fst01892965 (OCoLC)fst00887946 (OCoLC)fst01036260 (OCoLC)fst01160283 |
title | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines |
title_auth | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines |
title_exact_search | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines |
title_full | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro |
title_fullStr | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro |
title_full_unstemmed | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines Miguel Gonzalez-Fierro |
title_short | Mastering computer vision problems with state-of-the-art deep learning architectures, MXNet, and GPU virtual machines |
title_sort | mastering computer vision problems with state of the art deep learning architectures mxnet and gpu virtual machines |
topic | Strata Data Conference London, Great Britain) (2017 Neural networks (Computer science) Big data Ubiquitous computing Data mining Neural Networks, Computer Data Mining Réseaux neuronaux (Informatique) Données volumineuses Informatique omniprésente Exploration de données (Informatique) Big data (OCoLC)fst01892965 Data mining (OCoLC)fst00887946 Neural networks (Computer science) (OCoLC)fst01036260 Ubiquitous computing (OCoLC)fst01160283 Electronic videos |
topic_facet | Strata Data Conference London, Great Britain) (2017 Neural networks (Computer science) Big data Ubiquitous computing Data mining Neural Networks, Computer Data Mining Réseaux neuronaux (Informatique) Données volumineuses Informatique omniprésente Exploration de données (Informatique) Electronic videos |
url | https://learning.oreilly.com/library/view/-/9781492037316/?ar |
work_keys_str_mv | AT gonzalezfierromiguel masteringcomputervisionproblemswithstateoftheartdeeplearningarchitecturesmxnetandgpuvirtualmachines AT oreillyassociates masteringcomputervisionproblemswithstateoftheartdeeplearningarchitecturesmxnetandgpuvirtualmachines |