Applied text analysis with Python enabling language-aware data products with machine learning

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bengfort, Benjamin 1984- (VerfasserIn), Bilbro, Rebecca (VerfasserIn), Ojeda, Tony (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Sebastopol, CA O'Reilly Media [2018]
Ausgabe:First edition.
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-047618086
003 DE-627-1
005 20240228120534.0
007 cr uuu---uuuuu
008 191023s2018 xx |||||o 00| ||eng c
020 |a 9781491963012  |c electronic book  |9 978-1-4919-6301-2 
020 |a 1491963018  |c electronic book  |9 1-4919-6301-8 
020 |a 9781491962992  |c electronic bk.  |9 978-1-4919-6299-2 
020 |a 1491962992  |c electronic bk.  |9 1-4919-6299-2 
020 |a 1491963042  |9 1-4919-6304-2 
020 |a 9781491963043  |9 978-1-4919-6304-3 
035 |a (DE-627-1)047618086 
035 |a (DE-599)KEP047618086 
035 |a (ORHE)9781491963036 
035 |a (DE-627-1)047618086 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a COM  |2 bisacsh 
082 0 |a 005.133  |2 23 
100 1 |a Bengfort, Benjamin  |d 1984-  |e VerfasserIn  |4 aut 
245 1 0 |a Applied text analysis with Python  |b enabling language-aware data products with machine learning  |c Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda 
250 |a First edition. 
264 1 |a Sebastopol, CA  |b O'Reilly Media  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (xviii, 310 pages)  |b illustrations 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed July 23, 2018) 
520 |a From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning. You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations. Perform document classification and topic modeling. Steer the model selection process with visual diagnostics. Extract key phrases, named entities, and graph structures to reason about data in text. Build a dialog framework to enable chatbots and language-driven interaction. Use Spark to scale processing power and neural networks to scale model complexity.--Provided by publisher. 
650 0 |a Python (Computer program language) 
650 0 |a Natural language processing (Computer science) 
650 0 |a Machine learning 
650 2 |a Natural Language Processing 
650 2 |a Machine Learning 
650 4 |a Python (Langage de programmation) 
650 4 |a Traitement automatique des langues naturelles 
650 4 |a Apprentissage automatique 
650 4 |a COMPUTERS ; Programming Languages ; Python 
650 4 |a Machine learning 
650 4 |a Natural language processing (Computer science) 
650 4 |a Python (Computer program language) 
700 1 |a Bilbro, Rebecca  |e VerfasserIn  |4 aut 
700 1 |a Ojeda, Tony  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781491963036/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-047618086
_version_ 1818767306525769728
adam_text
any_adam_object
author Bengfort, Benjamin 1984-
Bilbro, Rebecca
Ojeda, Tony
author_facet Bengfort, Benjamin 1984-
Bilbro, Rebecca
Ojeda, Tony
author_role aut
aut
aut
author_sort Bengfort, Benjamin 1984-
author_variant b b bb
r b rb
t o to
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)047618086
(DE-599)KEP047618086
(ORHE)9781491963036
dewey-full 005.133
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.133
dewey-search 005.133
dewey-sort 15.133
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition First edition.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03675cam a22006012 4500</leader><controlfield tag="001">ZDB-30-ORH-047618086</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120534.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491963012</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4919-6301-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491963018</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4919-6301-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491962992</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4919-6299-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491962992</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4919-6299-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491963042</subfield><subfield code="9">1-4919-6304-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491963043</subfield><subfield code="9">978-1-4919-6304-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047618086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047618086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491963036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047618086</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bengfort, Benjamin</subfield><subfield code="d">1984-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied text analysis with Python</subfield><subfield code="b">enabling language-aware data products with machine learning</subfield><subfield code="c">Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 310 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed July 23, 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning. You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations. Perform document classification and topic modeling. Steer the model selection process with visual diagnostics. Extract key phrases, named entities, and graph structures to reason about data in text. Build a dialog framework to enable chatbots and language-driven interaction. Use Spark to scale processing power and neural networks to scale model complexity.--Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Programming Languages ; Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bilbro, Rebecca</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ojeda, Tony</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491963036/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-047618086
illustrated Illustrated
indexdate 2024-12-18T08:47:47Z
institution BVB
isbn 9781491963012
1491963018
9781491962992
1491962992
1491963042
9781491963043
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (xviii, 310 pages) illustrations
psigel ZDB-30-ORH
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher O'Reilly Media
record_format marc
spelling Bengfort, Benjamin 1984- VerfasserIn aut
Applied text analysis with Python enabling language-aware data products with machine learning Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda
First edition.
Sebastopol, CA O'Reilly Media [2018]
©2018
1 online resource (xviii, 310 pages) illustrations
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed July 23, 2018)
From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning. You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations. Perform document classification and topic modeling. Steer the model selection process with visual diagnostics. Extract key phrases, named entities, and graph structures to reason about data in text. Build a dialog framework to enable chatbots and language-driven interaction. Use Spark to scale processing power and neural networks to scale model complexity.--Provided by publisher.
Python (Computer program language)
Natural language processing (Computer science)
Machine learning
Natural Language Processing
Machine Learning
Python (Langage de programmation)
Traitement automatique des langues naturelles
Apprentissage automatique
COMPUTERS ; Programming Languages ; Python
Bilbro, Rebecca VerfasserIn aut
Ojeda, Tony VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781491963036/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Bengfort, Benjamin 1984-
Bilbro, Rebecca
Ojeda, Tony
Applied text analysis with Python enabling language-aware data products with machine learning
Python (Computer program language)
Natural language processing (Computer science)
Machine learning
Natural Language Processing
Machine Learning
Python (Langage de programmation)
Traitement automatique des langues naturelles
Apprentissage automatique
COMPUTERS ; Programming Languages ; Python
title Applied text analysis with Python enabling language-aware data products with machine learning
title_auth Applied text analysis with Python enabling language-aware data products with machine learning
title_exact_search Applied text analysis with Python enabling language-aware data products with machine learning
title_full Applied text analysis with Python enabling language-aware data products with machine learning Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda
title_fullStr Applied text analysis with Python enabling language-aware data products with machine learning Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda
title_full_unstemmed Applied text analysis with Python enabling language-aware data products with machine learning Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda
title_short Applied text analysis with Python
title_sort applied text analysis with python enabling language aware data products with machine learning
title_sub enabling language-aware data products with machine learning
topic Python (Computer program language)
Natural language processing (Computer science)
Machine learning
Natural Language Processing
Machine Learning
Python (Langage de programmation)
Traitement automatique des langues naturelles
Apprentissage automatique
COMPUTERS ; Programming Languages ; Python
topic_facet Python (Computer program language)
Natural language processing (Computer science)
Machine learning
Natural Language Processing
Machine Learning
Python (Langage de programmation)
Traitement automatique des langues naturelles
Apprentissage automatique
COMPUTERS ; Programming Languages ; Python
url https://learning.oreilly.com/library/view/-/9781491963036/?ar
work_keys_str_mv AT bengfortbenjamin appliedtextanalysiswithpythonenablinglanguageawaredataproductswithmachinelearning
AT bilbrorebecca appliedtextanalysiswithpythonenablinglanguageawaredataproductswithmachinelearning
AT ojedatony appliedtextanalysiswithpythonenablinglanguageawaredataproductswithmachinelearning