Data exploration in Python

"If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? Wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Downey, Allen B. (VerfasserIn)
Format: Elektronisch Video
Sprache:English
Veröffentlicht: [Place of publication not identified] O'Reilly Media 2015
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cgm a22000002 4500
001 ZDB-30-ORH-047615273
003 DE-627-1
005 20240228120008.0
006 m o | |
007 cr uuu---uuuuu
008 191023s2015 xx ||| |o o ||eng c
035 |a (DE-627-1)047615273 
035 |a (DE-599)KEP047615273 
035 |a (ORHE)9781491938324 
035 |a (DE-627-1)047615273 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Downey, Allen B.  |e VerfasserIn  |4 aut 
245 1 0 |a Data exploration in Python  |c Allen B. Downey 
264 1 |a [Place of publication not identified]  |b O'Reilly Media  |c 2015 
300 |a 1 online resource (1 streaming video file (3 hr., 30 min., 10 sec.))  |b digital, sound, color 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (viewed December 3, 2015) 
520 |a "If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? What analytic model should you use? How do you differentiate between correlation and causation? How do you ensure that your data is solid and your conclusions are on target? Allen Downey, Professor of Computer Science at Olin College of Engineering, author of Think Stats, Think Python, and Think Complexity, provides safe passage around the common pitfalls of exploratory data analysis, so you can manage, analyze, and present data with confidence."--Resource description page. 
630 2 0 |a ANACONDA (Electronic resource) 
650 0 |a Quantitative research  |x Computer programs 
650 0 |a Python (Computer program language) 
650 4 |a ANACONDA (Electronic resource)  |0 (OCoLC)fst01726986 
650 4 |a Recherche quantitative ; Logiciels 
650 4 |a Python (Langage de programmation) 
650 4 |a Python (Computer program language)  |0 (OCoLC)fst01084736 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9781491938324/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
935 |c vide 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-047615273
_version_ 1818767390957109248
adam_text
any_adam_object
author Downey, Allen B.
author_facet Downey, Allen B.
author_role aut
author_sort Downey, Allen B.
author_variant a b d ab abd
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)047615273
(DE-599)KEP047615273
(ORHE)9781491938324
format Electronic
Video
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02296cgm a22004092 4500</leader><controlfield tag="001">ZDB-30-ORH-047615273</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120008.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2015 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047615273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047615273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491938324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047615273</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Downey, Allen B.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data exploration in Python</subfield><subfield code="c">Allen B. Downey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 streaming video file (3 hr., 30 min., 10 sec.))</subfield><subfield code="b">digital, sound, color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from resource description page (viewed December 3, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? What analytic model should you use? How do you differentiate between correlation and causation? How do you ensure that your data is solid and your conclusions are on target? Allen Downey, Professor of Computer Science at Olin College of Engineering, author of Think Stats, Think Python, and Think Complexity, provides safe passage around the common pitfalls of exploratory data analysis, so you can manage, analyze, and present data with confidence."--Resource description page.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">ANACONDA (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANACONDA (Electronic resource)</subfield><subfield code="0">(OCoLC)fst01726986</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recherche quantitative ; Logiciels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">(OCoLC)fst01084736</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491938324/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-047615273
illustrated Not Illustrated
indexdate 2024-12-18T08:49:08Z
institution BVB
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 streaming video file (3 hr., 30 min., 10 sec.)) digital, sound, color
psigel ZDB-30-ORH
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher O'Reilly Media
record_format marc
spelling Downey, Allen B. VerfasserIn aut
Data exploration in Python Allen B. Downey
[Place of publication not identified] O'Reilly Media 2015
1 online resource (1 streaming video file (3 hr., 30 min., 10 sec.)) digital, sound, color
zweidimensionales bewegtes Bild tdi rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Title from resource description page (viewed December 3, 2015)
"If you're a fledgling data scientist with only cursory statistical training and little experience with real world data sets, you may feel like you're stumbling around in the dark when you're asked to interpret and present data to decision makers. How do you validate the data? What analytic model should you use? How do you differentiate between correlation and causation? How do you ensure that your data is solid and your conclusions are on target? Allen Downey, Professor of Computer Science at Olin College of Engineering, author of Think Stats, Think Python, and Think Complexity, provides safe passage around the common pitfalls of exploratory data analysis, so you can manage, analyze, and present data with confidence."--Resource description page.
ANACONDA (Electronic resource)
Quantitative research Computer programs
Python (Computer program language)
ANACONDA (Electronic resource) (OCoLC)fst01726986
Recherche quantitative ; Logiciels
Python (Langage de programmation)
Python (Computer program language) (OCoLC)fst01084736
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9781491938324/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Downey, Allen B.
Data exploration in Python
ANACONDA (Electronic resource)
Quantitative research Computer programs
Python (Computer program language)
ANACONDA (Electronic resource) (OCoLC)fst01726986
Recherche quantitative ; Logiciels
Python (Langage de programmation)
Python (Computer program language) (OCoLC)fst01084736
subject_GND (OCoLC)fst01726986
(OCoLC)fst01084736
title Data exploration in Python
title_auth Data exploration in Python
title_exact_search Data exploration in Python
title_full Data exploration in Python Allen B. Downey
title_fullStr Data exploration in Python Allen B. Downey
title_full_unstemmed Data exploration in Python Allen B. Downey
title_short Data exploration in Python
title_sort data exploration in python
topic ANACONDA (Electronic resource)
Quantitative research Computer programs
Python (Computer program language)
ANACONDA (Electronic resource) (OCoLC)fst01726986
Recherche quantitative ; Logiciels
Python (Langage de programmation)
Python (Computer program language) (OCoLC)fst01084736
topic_facet ANACONDA (Electronic resource)
Quantitative research Computer programs
Python (Computer program language)
Recherche quantitative ; Logiciels
Python (Langage de programmation)
url https://learning.oreilly.com/library/view/-/9781491938324/?ar
work_keys_str_mv AT downeyallenb dataexplorationinpython