Big data fundamentals concepts, drivers & techniques

"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Erl, Thomas (VerfasserIn), Khattak, Wajid (VerfasserIn), Buhler, Paul (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston [Vancouver, BC] Prentice Hall [2016]
Boston [Vancouver, BC] ServiceTech Press [2016]
Schriftenreihe:Prentice Hall Service Technology Series from Thomas Erl
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-047445238
003 DE-627-1
005 20240228120023.0
007 cr uuu---uuuuu
008 191023s2016 xx |||||o 00| ||eng c
020 |a 9780134291215  |c electronic bk.  |9 978-0-13-429121-5 
020 |a 0134291212  |c electronic bk.  |9 0-13-429121-2 
020 |a 9780134291185  |9 978-0-13-429118-5 
035 |a (DE-627-1)047445238 
035 |a (DE-599)KEP047445238 
035 |a (ORHE)9780134291185 
035 |a (DE-627-1)047445238 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a COM  |2 bisacsh 
082 0 |a 006.3/12  |2 23 
100 1 |a Erl, Thomas  |e VerfasserIn  |4 aut 
245 1 0 |a Big data fundamentals  |b concepts, drivers & techniques  |c Thomas Erl, Wajid Khattak, and Paul Buhler 
264 1 |a Boston  |a [Vancouver, BC]  |b Prentice Hall  |c [2016] 
264 1 |a Boston  |a [Vancouver, BC]  |b ServiceTech Press  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (1 volume)  |b illustrations. 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Prentice Hall Service Technology Series from Thomas Erl 
500 |a Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016) 
520 |a "This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning. 
650 0 |a Big data 
650 0 |a Data mining 
650 0 |a Decision making  |x Data processing 
650 4 |a Données volumineuses 
650 4 |a Exploration de données (Informatique) 
650 4 |a Prise de décision ; Informatique 
650 4 |a COMPUTERS ; General 
650 4 |a Decision making ; Data processing 
650 4 |a Data mining 
650 4 |a Big data 
700 1 |a Khattak, Wajid  |e VerfasserIn  |4 aut 
700 1 |a Buhler, Paul  |e VerfasserIn  |4 aut 
776 1 |z 9780134291079 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780134291079 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9780134291185/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-047445238
_version_ 1818767341417136128
adam_text
any_adam_object
author Erl, Thomas
Khattak, Wajid
Buhler, Paul
author_facet Erl, Thomas
Khattak, Wajid
Buhler, Paul
author_role aut
aut
aut
author_sort Erl, Thomas
author_variant t e te
w k wk
p b pb
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)047445238
(DE-599)KEP047445238
(ORHE)9780134291185
dewey-full 006.3/12
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/12
dewey-search 006.3/12
dewey-sort 16.3 212
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04313cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-047445238</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134291215</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-13-429121-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0134291212</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-13-429121-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134291185</subfield><subfield code="9">978-0-13-429118-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047445238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047445238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780134291185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047445238</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erl, Thomas</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data fundamentals</subfield><subfield code="b">concepts, drivers &amp; techniques</subfield><subfield code="c">Thomas Erl, Wajid Khattak, and Paul Buhler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="a">[Vancouver, BC]</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="a">[Vancouver, BC]</subfield><subfield code="b">ServiceTech Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Prentice Hall Service Technology Series from Thomas Erl</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Decision making</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prise de décision ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khattak, Wajid</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buhler, Paul</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780134291079</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780134291079</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780134291185/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-047445238
illustrated Illustrated
indexdate 2024-12-18T08:48:20Z
institution BVB
isbn 9780134291215
0134291212
9780134291185
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource (1 volume) illustrations.
psigel ZDB-30-ORH
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Prentice Hall
ServiceTech Press
record_format marc
series2 Prentice Hall Service Technology Series from Thomas Erl
spelling Erl, Thomas VerfasserIn aut
Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler
Boston [Vancouver, BC] Prentice Hall [2016]
Boston [Vancouver, BC] ServiceTech Press [2016]
©2016
1 online resource (1 volume) illustrations.
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Prentice Hall Service Technology Series from Thomas Erl
Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016)
"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning.
Big data
Data mining
Decision making Data processing
Données volumineuses
Exploration de données (Informatique)
Prise de décision ; Informatique
COMPUTERS ; General
Decision making ; Data processing
Khattak, Wajid VerfasserIn aut
Buhler, Paul VerfasserIn aut
9780134291079
Erscheint auch als Druck-Ausgabe 9780134291079
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780134291185/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Erl, Thomas
Khattak, Wajid
Buhler, Paul
Big data fundamentals concepts, drivers & techniques
Big data
Data mining
Decision making Data processing
Données volumineuses
Exploration de données (Informatique)
Prise de décision ; Informatique
COMPUTERS ; General
Decision making ; Data processing
title Big data fundamentals concepts, drivers & techniques
title_auth Big data fundamentals concepts, drivers & techniques
title_exact_search Big data fundamentals concepts, drivers & techniques
title_full Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler
title_fullStr Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler
title_full_unstemmed Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler
title_short Big data fundamentals
title_sort big data fundamentals concepts drivers techniques
title_sub concepts, drivers & techniques
topic Big data
Data mining
Decision making Data processing
Données volumineuses
Exploration de données (Informatique)
Prise de décision ; Informatique
COMPUTERS ; General
Decision making ; Data processing
topic_facet Big data
Data mining
Decision making Data processing
Données volumineuses
Exploration de données (Informatique)
Prise de décision ; Informatique
COMPUTERS ; General
Decision making ; Data processing
url https://learning.oreilly.com/library/view/-/9780134291185/?ar
work_keys_str_mv AT erlthomas bigdatafundamentalsconceptsdriverstechniques
AT khattakwajid bigdatafundamentalsconceptsdriverstechniques
AT buhlerpaul bigdatafundamentalsconceptsdriverstechniques