Big data fundamentals concepts, drivers & techniques
"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the mar...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston [Vancouver, BC]
Prentice Hall
[2016]
Boston [Vancouver, BC] ServiceTech Press [2016] |
Schriftenreihe: | Prentice Hall Service Technology Series from Thomas Erl
|
Schlagworte: | |
Online-Zugang: | lizenzpflichtig |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047445238 | ||
003 | DE-627-1 | ||
005 | 20240228120023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2016 xx |||||o 00| ||eng c | ||
020 | |a 9780134291215 |c electronic bk. |9 978-0-13-429121-5 | ||
020 | |a 0134291212 |c electronic bk. |9 0-13-429121-2 | ||
020 | |a 9780134291185 |9 978-0-13-429118-5 | ||
035 | |a (DE-627-1)047445238 | ||
035 | |a (DE-599)KEP047445238 | ||
035 | |a (ORHE)9780134291185 | ||
035 | |a (DE-627-1)047445238 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
082 | 0 | |a 006.3/12 |2 23 | |
100 | 1 | |a Erl, Thomas |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Big data fundamentals |b concepts, drivers & techniques |c Thomas Erl, Wajid Khattak, and Paul Buhler |
264 | 1 | |a Boston |a [Vancouver, BC] |b Prentice Hall |c [2016] | |
264 | 1 | |a Boston |a [Vancouver, BC] |b ServiceTech Press |c [2016] | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (1 volume) |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Prentice Hall Service Technology Series from Thomas Erl | |
500 | |a Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016) | ||
520 | |a "This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning. | ||
650 | 0 | |a Big data | |
650 | 0 | |a Data mining | |
650 | 0 | |a Decision making |x Data processing | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Prise de décision ; Informatique | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Decision making ; Data processing | |
650 | 4 | |a Data mining | |
650 | 4 | |a Big data | |
700 | 1 | |a Khattak, Wajid |e VerfasserIn |4 aut | |
700 | 1 | |a Buhler, Paul |e VerfasserIn |4 aut | |
776 | 1 | |z 9780134291079 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780134291079 |
856 | 4 | 0 | |l TUM01 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780134291185/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047445238 |
---|---|
_version_ | 1818767341417136128 |
adam_text | |
any_adam_object | |
author | Erl, Thomas Khattak, Wajid Buhler, Paul |
author_facet | Erl, Thomas Khattak, Wajid Buhler, Paul |
author_role | aut aut aut |
author_sort | Erl, Thomas |
author_variant | t e te w k wk p b pb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047445238 (DE-599)KEP047445238 (ORHE)9780134291185 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04313cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-047445238</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134291215</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-13-429121-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0134291212</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-13-429121-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134291185</subfield><subfield code="9">978-0-13-429118-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047445238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047445238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780134291185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047445238</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erl, Thomas</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data fundamentals</subfield><subfield code="b">concepts, drivers & techniques</subfield><subfield code="c">Thomas Erl, Wajid Khattak, and Paul Buhler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="a">[Vancouver, BC]</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="a">[Vancouver, BC]</subfield><subfield code="b">ServiceTech Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Prentice Hall Service Technology Series from Thomas Erl</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Decision making</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prise de décision ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khattak, Wajid</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buhler, Paul</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780134291079</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780134291079</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780134291185/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047445238 |
illustrated | Illustrated |
indexdate | 2024-12-18T08:48:20Z |
institution | BVB |
isbn | 9780134291215 0134291212 9780134291185 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 volume) illustrations. |
psigel | ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Prentice Hall ServiceTech Press |
record_format | marc |
series2 | Prentice Hall Service Technology Series from Thomas Erl |
spelling | Erl, Thomas VerfasserIn aut Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler Boston [Vancouver, BC] Prentice Hall [2016] Boston [Vancouver, BC] ServiceTech Press [2016] ©2016 1 online resource (1 volume) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Prentice Hall Service Technology Series from Thomas Erl Includes index. - Online resource; title from title page (Safari, viewed January 6, 2016) "This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning. Big data Data mining Decision making Data processing Données volumineuses Exploration de données (Informatique) Prise de décision ; Informatique COMPUTERS ; General Decision making ; Data processing Khattak, Wajid VerfasserIn aut Buhler, Paul VerfasserIn aut 9780134291079 Erscheint auch als Druck-Ausgabe 9780134291079 TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780134291185/?ar X:ORHE Aggregator lizenzpflichtig Volltext |
spellingShingle | Erl, Thomas Khattak, Wajid Buhler, Paul Big data fundamentals concepts, drivers & techniques Big data Data mining Decision making Data processing Données volumineuses Exploration de données (Informatique) Prise de décision ; Informatique COMPUTERS ; General Decision making ; Data processing |
title | Big data fundamentals concepts, drivers & techniques |
title_auth | Big data fundamentals concepts, drivers & techniques |
title_exact_search | Big data fundamentals concepts, drivers & techniques |
title_full | Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler |
title_fullStr | Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler |
title_full_unstemmed | Big data fundamentals concepts, drivers & techniques Thomas Erl, Wajid Khattak, and Paul Buhler |
title_short | Big data fundamentals |
title_sort | big data fundamentals concepts drivers techniques |
title_sub | concepts, drivers & techniques |
topic | Big data Data mining Decision making Data processing Données volumineuses Exploration de données (Informatique) Prise de décision ; Informatique COMPUTERS ; General Decision making ; Data processing |
topic_facet | Big data Data mining Decision making Data processing Données volumineuses Exploration de données (Informatique) Prise de décision ; Informatique COMPUTERS ; General Decision making ; Data processing |
url | https://learning.oreilly.com/library/view/-/9780134291185/?ar |
work_keys_str_mv | AT erlthomas bigdatafundamentalsconceptsdriverstechniques AT khattakwajid bigdatafundamentalsconceptsdriverstechniques AT buhlerpaul bigdatafundamentalsconceptsdriverstechniques |