Practical data science with Hadoop and Spark designing and building effective analytics at scale

The Complete Guide to Data Science with Hadoop--For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Medelevitch, Ofer (VerfasserIn), Stella, Casey (VerfasserIn), Eadline, Doug 1956- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston Addison-Wesley [2017]
Schriftenreihe:Addison-Wesley data & analytics series
Schlagworte:
Online-Zugang:lizenzpflichtig
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a22000002 4500
001 ZDB-30-ORH-047441461
003 DE-627-1
005 20240228120213.0
007 cr uuu---uuuuu
008 191023s2017 xx |||||o 00| ||eng c
020 |a 9780134029719  |c electronic bk.  |9 978-0-13-402971-9 
020 |a 0134029712  |c electronic bk.  |9 0-13-402971-2 
020 |a 0134024141  |9 0-13-402414-1 
020 |a 9780134024141  |9 978-0-13-402414-1 
020 |a 9780134029733  |9 978-0-13-402973-3 
035 |a (DE-627-1)047441461 
035 |a (DE-599)KEP047441461 
035 |a (ORHE)9780134029733 
035 |a (DE-627-1)047441461 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
072 7 |a COM  |2 bisacsh 
082 0 |a 005.74  |2 23 
100 1 |a Medelevitch, Ofer  |e VerfasserIn  |4 aut 
245 1 0 |a Practical data science with Hadoop and Spark  |b designing and building effective analytics at scale  |c Ofer Medelevitch, Casey Stella, Douglas Eadline 
246 3 3 |a Designing and building effective analytics at scale 
264 1 |a Boston  |b Addison-Wesley  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource  |b illustrations. 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Addison-Wesley data & analytics series 
500 |a Includes index. - Includes: list of additional resources and index. - Online resource; title from title page (Safari, viewed December 16, 2016) 
520 |a The Complete Guide to Data Science with Hadoop--For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language. 
630 2 0 |a Apache Hadoop 
630 2 0 |a Spark (Electronic resource : Apache Software Foundation) 
650 0 |a Electronic data processing  |x Distributed processing 
650 0 |a Big data  |x Computer programs 
650 4 |a Apache Hadoop 
650 4 |a Spark (Electronic resource : Apache Software Foundation) 
650 4 |a Traitement réparti 
650 4 |a Données volumineuses ; Logiciels 
650 4 |a COMPUTERS ; Data Processing 
650 4 |a Electronic data processing ; Distributed processing 
700 1 |a Stella, Casey  |e VerfasserIn  |4 aut 
700 1 |a Eadline, Doug  |d 1956-  |e VerfasserIn  |4 aut 
856 4 0 |l TUM01  |p ZDB-30-ORH  |q TUM_PDA_ORH  |u https://learning.oreilly.com/library/view/-/9780134029733/?ar  |m X:ORHE  |x Aggregator  |z lizenzpflichtig  |3 Volltext 
912 |a ZDB-30-ORH 
912 |a ZDB-30-ORH 
951 |a BO 
912 |a ZDB-30-ORH 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-30-ORH-047441461
_version_ 1818767341967638528
adam_text
any_adam_object
author Medelevitch, Ofer
Stella, Casey
Eadline, Doug 1956-
author_facet Medelevitch, Ofer
Stella, Casey
Eadline, Doug 1956-
author_role aut
aut
aut
author_sort Medelevitch, Ofer
author_variant o m om
c s cs
d e de
building Verbundindex
bvnumber localTUM
collection ZDB-30-ORH
ctrlnum (DE-627-1)047441461
(DE-599)KEP047441461
(ORHE)9780134029733
dewey-full 005.74
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.74
dewey-search 005.74
dewey-sort 15.74
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04248cam a22005772 4500</leader><controlfield tag="001">ZDB-30-ORH-047441461</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120213.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134029719</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-13-402971-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0134029712</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-13-402971-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0134024141</subfield><subfield code="9">0-13-402414-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134024141</subfield><subfield code="9">978-0-13-402414-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134029733</subfield><subfield code="9">978-0-13-402973-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047441461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047441461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780134029733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047441461</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Medelevitch, Ofer</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical data science with Hadoop and Spark</subfield><subfield code="b">designing and building effective analytics at scale</subfield><subfield code="c">Ofer Medelevitch, Casey Stella, Douglas Eadline</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Designing and building effective analytics at scale</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Addison-Wesley</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Addison-Wesley data &amp; analytics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Includes: list of additional resources and index. - Online resource; title from title page (Safari, viewed December 16, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Complete Guide to Data Science with Hadoop--For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Apache Hadoop</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Spark (Electronic resource : Apache Software Foundation)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apache Hadoop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark (Electronic resource : Apache Software Foundation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement réparti</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses ; Logiciels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Data Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing ; Distributed processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stella, Casey</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eadline, Doug</subfield><subfield code="d">1956-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780134029733/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-30-ORH-047441461
illustrated Illustrated
indexdate 2024-12-18T08:48:21Z
institution BVB
isbn 9780134029719
0134029712
0134024141
9780134024141
9780134029733
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 online resource illustrations.
psigel ZDB-30-ORH
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Addison-Wesley
record_format marc
series2 Addison-Wesley data & analytics series
spelling Medelevitch, Ofer VerfasserIn aut
Practical data science with Hadoop and Spark designing and building effective analytics at scale Ofer Medelevitch, Casey Stella, Douglas Eadline
Designing and building effective analytics at scale
Boston Addison-Wesley [2017]
©2017
1 online resource illustrations.
Text txt rdacontent
Computermedien c rdamedia
Online-Ressource cr rdacarrier
Addison-Wesley data & analytics series
Includes index. - Includes: list of additional resources and index. - Online resource; title from title page (Safari, viewed December 16, 2016)
The Complete Guide to Data Science with Hadoop--For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language.
Apache Hadoop
Spark (Electronic resource : Apache Software Foundation)
Electronic data processing Distributed processing
Big data Computer programs
Traitement réparti
Données volumineuses ; Logiciels
COMPUTERS ; Data Processing
Electronic data processing ; Distributed processing
Stella, Casey VerfasserIn aut
Eadline, Doug 1956- VerfasserIn aut
TUM01 ZDB-30-ORH TUM_PDA_ORH https://learning.oreilly.com/library/view/-/9780134029733/?ar X:ORHE Aggregator lizenzpflichtig Volltext
spellingShingle Medelevitch, Ofer
Stella, Casey
Eadline, Doug 1956-
Practical data science with Hadoop and Spark designing and building effective analytics at scale
Apache Hadoop
Spark (Electronic resource : Apache Software Foundation)
Electronic data processing Distributed processing
Big data Computer programs
Traitement réparti
Données volumineuses ; Logiciels
COMPUTERS ; Data Processing
Electronic data processing ; Distributed processing
title Practical data science with Hadoop and Spark designing and building effective analytics at scale
title_alt Designing and building effective analytics at scale
title_auth Practical data science with Hadoop and Spark designing and building effective analytics at scale
title_exact_search Practical data science with Hadoop and Spark designing and building effective analytics at scale
title_full Practical data science with Hadoop and Spark designing and building effective analytics at scale Ofer Medelevitch, Casey Stella, Douglas Eadline
title_fullStr Practical data science with Hadoop and Spark designing and building effective analytics at scale Ofer Medelevitch, Casey Stella, Douglas Eadline
title_full_unstemmed Practical data science with Hadoop and Spark designing and building effective analytics at scale Ofer Medelevitch, Casey Stella, Douglas Eadline
title_short Practical data science with Hadoop and Spark
title_sort practical data science with hadoop and spark designing and building effective analytics at scale
title_sub designing and building effective analytics at scale
topic Apache Hadoop
Spark (Electronic resource : Apache Software Foundation)
Electronic data processing Distributed processing
Big data Computer programs
Traitement réparti
Données volumineuses ; Logiciels
COMPUTERS ; Data Processing
Electronic data processing ; Distributed processing
topic_facet Apache Hadoop
Spark (Electronic resource : Apache Software Foundation)
Electronic data processing Distributed processing
Big data Computer programs
Traitement réparti
Données volumineuses ; Logiciels
COMPUTERS ; Data Processing
Electronic data processing ; Distributed processing
url https://learning.oreilly.com/library/view/-/9780134029733/?ar
work_keys_str_mv AT medelevitchofer practicaldatasciencewithhadoopandsparkdesigningandbuildingeffectiveanalyticsatscale
AT stellacasey practicaldatasciencewithhadoopandsparkdesigningandbuildingeffectiveanalyticsatscale
AT eadlinedoug practicaldatasciencewithhadoopandsparkdesigningandbuildingeffectiveanalyticsatscale
AT medelevitchofer designingandbuildingeffectiveanalyticsatscale
AT stellacasey designingandbuildingeffectiveanalyticsatscale
AT eadlinedoug designingandbuildingeffectiveanalyticsatscale