Probabilistic models of the brain perception and neural function

Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Lewicki, Michael S., Olshausen, Bruno A., Rao, Rajesh P. N.
Format: E-Book
Sprache:English
Veröffentlicht: ©2002
Schriftenreihe:Neural information processing series
Online-Zugang:MIT Press
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a2200000Ia 4500
001 ZDB-260-MPOB-5583
003 MaCbMITP
005 20190503073318.0
006 m o d
007 cr cn|||||||||
008 030403s2002 maua ob 001 0 eng d
020 |a 0262182246 
020 |a 0262282070 
020 |a 0262526271 
020 |a 0585437122 
020 |a 9780262182249 
020 |a 9780262282079 
020 |a 9780262526272 
020 |a 9780585437125 
245 0 0 |a Probabilistic models of the brain  |b perception and neural function  |c edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki 
264 4 |c ©2002 
300 |a 1 Online-Ressource (x, 324 Seiten)  |b Illustrationen 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Neural information processing series 
500 |a "A Bradford book." 
520 8 |a Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals. 
700 1 |a Lewicki, Michael S. 
700 1 |a Olshausen, Bruno A. 
700 1 |a Rao, Rajesh P. N. 
856 4 0 |l TUM01  |p ZDB-260-MPOB  |q TUM_PDA_MPOB  |3 MIT Press  |u https://doi.org/10.7551/mitpress/5583.001.0001?locatt=mode:legacy  |3 Volltext 
912 |a ZDB-260-MPOB 
912 |a ZDB-260-MPOB 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-260-MPOB-5583
_version_ 1818768151704240128
adam_text
any_adam_object
author2 Lewicki, Michael S.
Olshausen, Bruno A.
Rao, Rajesh P. N.
author2_role


author2_variant m s l ms msl
b a o ba bao
r p n r rpn rpnr
author_facet Lewicki, Michael S.
Olshausen, Bruno A.
Rao, Rajesh P. N.
author_sort Lewicki, Michael S.
building Verbundindex
bvnumber localTUM
collection ZDB-260-MPOB
doi_str_mv 10.7551/mitpress/5583.001.0001
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02318cam a2200361Ia 4500</leader><controlfield tag="001">ZDB-260-MPOB-5583</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073318.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030403s2002 maua ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262182246</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262282070</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262526271</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585437122</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262182249</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262282079</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262526272</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585437125</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Probabilistic models of the brain</subfield><subfield code="b">perception and neural function</subfield><subfield code="c">edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 324 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"A Bradford book."</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewicki, Michael S.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olshausen, Bruno A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Rajesh P. N.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/5583.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-260-MPOB-5583
illustrated Illustrated
indexdate 2024-12-18T09:01:13Z
institution BVB
isbn 0262182246
0262282070
0262526271
0585437122
9780262182249
9780262282079
9780262526272
9780585437125
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (x, 324 Seiten) Illustrationen
psigel ZDB-260-MPOB
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
record_format marc
series2 Neural information processing series
spelling Probabilistic models of the brain perception and neural function edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki
©2002
1 Online-Ressource (x, 324 Seiten) Illustrationen
txt
c
cr
Neural information processing series
"A Bradford book."
Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Lewicki, Michael S.
Olshausen, Bruno A.
Rao, Rajesh P. N.
TUM01 ZDB-260-MPOB TUM_PDA_MPOB MIT Press https://doi.org/10.7551/mitpress/5583.001.0001?locatt=mode:legacy Volltext
spellingShingle Probabilistic models of the brain perception and neural function
title Probabilistic models of the brain perception and neural function
title_auth Probabilistic models of the brain perception and neural function
title_exact_search Probabilistic models of the brain perception and neural function
title_full Probabilistic models of the brain perception and neural function edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki
title_fullStr Probabilistic models of the brain perception and neural function edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki
title_full_unstemmed Probabilistic models of the brain perception and neural function edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki
title_short Probabilistic models of the brain
title_sort probabilistic models of the brain perception and neural function
title_sub perception and neural function
url https://doi.org/10.7551/mitpress/5583.001.0001?locatt=mode:legacy
work_keys_str_mv AT lewickimichaels probabilisticmodelsofthebrainperceptionandneuralfunction
AT olshausenbrunoa probabilisticmodelsofthebrainperceptionandneuralfunction
AT raorajeshpn probabilisticmodelsofthebrainperceptionandneuralfunction