Log-linear models, extensions, and applications

Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Aravkin, Aleksandr 1982-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge MIT Press 2018
Schriftenreihe:Neural information processing series
Online-Zugang:MIT Press
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a2200000Ki 4500
001 ZDB-260-MPOB-10012
003 MaCbMITP
005 20190503073447.0
006 m o d
007 cr cnu|||unuuu
008 190117s2018 mau o 000 0 eng d
020 |a 0262351609 
020 |a 9780262351607 
245 0 0 |a Log-linear models, extensions, and applications  |c edited by Aleksandr Aravkin [and six others] 
264 1 |a Cambridge  |b MIT Press  |c 2018 
300 |a 1 Online-Ressource (214 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Neural information processing series 
520 |a Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives. 
700 1 |a Aravkin, Aleksandr  |d 1982- 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780262039505 
856 4 0 |l TUM01  |p ZDB-260-MPOB  |q TUM_PDA_MPOB  |3 MIT Press  |u https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy  |3 Volltext 
912 |a ZDB-260-MPOB 
912 |a ZDB-260-MPOB 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-260-MPOB-10012
_version_ 1818768153082068992
adam_text
any_adam_object
author2 Aravkin, Aleksandr 1982-
author2_role
author2_variant a a aa
author_facet Aravkin, Aleksandr 1982-
author_sort Aravkin, Aleksandr 1982-
building Verbundindex
bvnumber localTUM
collection ZDB-260-MPOB
doi_str_mv 10.7551/mitpress/10012.001.0001
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01883cam a2200265Ki 4500</leader><controlfield tag="001">ZDB-260-MPOB-10012</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">190117s2018 mau o 000 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262351609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262351607</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Log-linear models, extensions, and applications</subfield><subfield code="c">edited by Aleksandr Aravkin [and six others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">MIT Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (214 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aravkin, Aleksandr</subfield><subfield code="d">1982-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262039505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-260-MPOB-10012
illustrated Not Illustrated
indexdate 2024-12-18T09:01:15Z
institution BVB
isbn 0262351609
9780262351607
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (214 Seiten)
psigel ZDB-260-MPOB
publishDate 2018
publishDateSearch 2018
publishDateSort 2018
publisher MIT Press
record_format marc
series2 Neural information processing series
spelling Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others]
Cambridge MIT Press 2018
1 Online-Ressource (214 Seiten)
txt
c
cr
Neural information processing series
Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.
Aravkin, Aleksandr 1982-
Erscheint auch als Druck-Ausgabe 9780262039505
TUM01 ZDB-260-MPOB TUM_PDA_MPOB MIT Press https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy Volltext
spellingShingle Log-linear models, extensions, and applications
title Log-linear models, extensions, and applications
title_auth Log-linear models, extensions, and applications
title_exact_search Log-linear models, extensions, and applications
title_full Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others]
title_fullStr Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others]
title_full_unstemmed Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others]
title_short Log-linear models, extensions, and applications
title_sort log linear models extensions and applications
url https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy
work_keys_str_mv AT aravkinaleksandr loglinearmodelsextensionsandapplications