Log-linear models, extensions, and applications
Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitt...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
MIT Press
2018
|
Schriftenreihe: | Neural information processing series
|
Online-Zugang: | MIT Press |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a2200000Ki 4500 | ||
---|---|---|---|
001 | ZDB-260-MPOB-10012 | ||
003 | MaCbMITP | ||
005 | 20190503073447.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 190117s2018 mau o 000 0 eng d | ||
020 | |a 0262351609 | ||
020 | |a 9780262351607 | ||
245 | 0 | 0 | |a Log-linear models, extensions, and applications |c edited by Aleksandr Aravkin [and six others] |
264 | 1 | |a Cambridge |b MIT Press |c 2018 | |
300 | |a 1 Online-Ressource (214 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Neural information processing series | |
520 | |a Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives. | ||
700 | 1 | |a Aravkin, Aleksandr |d 1982- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780262039505 |
856 | 4 | 0 | |l TUM01 |p ZDB-260-MPOB |q TUM_PDA_MPOB |3 MIT Press |u https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy |3 Volltext |
912 | |a ZDB-260-MPOB | ||
912 | |a ZDB-260-MPOB | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-260-MPOB-10012 |
---|---|
_version_ | 1818768153082068992 |
adam_text | |
any_adam_object | |
author2 | Aravkin, Aleksandr 1982- |
author2_role | |
author2_variant | a a aa |
author_facet | Aravkin, Aleksandr 1982- |
author_sort | Aravkin, Aleksandr 1982- |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-260-MPOB |
doi_str_mv | 10.7551/mitpress/10012.001.0001 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01883cam a2200265Ki 4500</leader><controlfield tag="001">ZDB-260-MPOB-10012</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">190117s2018 mau o 000 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262351609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262351607</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Log-linear models, extensions, and applications</subfield><subfield code="c">edited by Aleksandr Aravkin [and six others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">MIT Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (214 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aravkin, Aleksandr</subfield><subfield code="d">1982-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262039505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-260-MPOB-10012 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T09:01:15Z |
institution | BVB |
isbn | 0262351609 9780262351607 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (214 Seiten) |
psigel | ZDB-260-MPOB |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | MIT Press |
record_format | marc |
series2 | Neural information processing series |
spelling | Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others] Cambridge MIT Press 2018 1 Online-Ressource (214 Seiten) txt c cr Neural information processing series Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, cover the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications for speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives. Aravkin, Aleksandr 1982- Erscheint auch als Druck-Ausgabe 9780262039505 TUM01 ZDB-260-MPOB TUM_PDA_MPOB MIT Press https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy Volltext |
spellingShingle | Log-linear models, extensions, and applications |
title | Log-linear models, extensions, and applications |
title_auth | Log-linear models, extensions, and applications |
title_exact_search | Log-linear models, extensions, and applications |
title_full | Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others] |
title_fullStr | Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others] |
title_full_unstemmed | Log-linear models, extensions, and applications edited by Aleksandr Aravkin [and six others] |
title_short | Log-linear models, extensions, and applications |
title_sort | log linear models extensions and applications |
url | https://doi.org/10.7551/mitpress/10012.001.0001?locatt=mode:legacy |
work_keys_str_mv | AT aravkinaleksandr loglinearmodelsextensionsandapplications |