Knowledge engineering building personal learning assistants for evidence-based reasoning

This book presents a significant advancement in the theory and practice of knowledge engineering, the discipline concerned with the development of systems that use expert knowledge and reasoning to solve complex problems. It covers the main stages in the development of a knowledge-based system: unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tecuci, Gheorghe
Weitere Verfasser: Boicu, Mihai, Marcu, Dorin, Schum, David A.
Format: E-Book
Sprache:English
Veröffentlicht: New York Cambridge University Press 2016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781316388464
003 UkCbUP
005 20160912145820.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 150217s2016||||nyu o ||1 0|eng|d
020 |a 9781316388464 
100 1 |a Tecuci, Gheorghe 
245 1 0 |a Knowledge engineering  |b building personal learning assistants for evidence-based reasoning  |c Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum 
264 1 |a New York  |b Cambridge University Press  |c 2016 
300 |a 1 Online-Ressource (xxiv, 455 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
520 |a This book presents a significant advancement in the theory and practice of knowledge engineering, the discipline concerned with the development of systems that use expert knowledge and reasoning to solve complex problems. It covers the main stages in the development of a knowledge-based system: understanding the application domain, modeling problem solving in that domain, developing the ontology and the reasoning rules, and testing the system. The book focuses on a special class of systems - learning assistants for evidence-based reasoning that learn complex problem solving expertise directly from human experts, support experts and non-experts in problem solving and decision making, and teach their problem solving expertise to students. A powerful learning agent shell, Disciple-EBR, is included with the book, enabling students, practitioners, and researchers to rapidly develop learning assistants in a wide variety of domains that require evidence-based reasoning, including intelligence analysis, cyber security, law, forensics, medicine, and education. 
700 1 |a Boicu, Mihai 
700 1 |a Marcu, Dorin 
700 1 |a Schum, David A. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107122567 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9781316388464  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781316388464
_version_ 1818779681538703360
adam_text
any_adam_object
author Tecuci, Gheorghe
author2 Boicu, Mihai
Marcu, Dorin
Schum, David A.
author2_role


author2_variant m b mb
d m dm
d a s da das
author_facet Tecuci, Gheorghe
Boicu, Mihai
Marcu, Dorin
Schum, David A.
author_role
author_sort Tecuci, Gheorghe
author_variant g t gt
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9781316388464
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01931nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781316388464</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20160912145820.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">150217s2016||||nyu o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316388464</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tecuci, Gheorghe</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge engineering</subfield><subfield code="b">building personal learning assistants for evidence-based reasoning</subfield><subfield code="c">Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 455 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a significant advancement in the theory and practice of knowledge engineering, the discipline concerned with the development of systems that use expert knowledge and reasoning to solve complex problems. It covers the main stages in the development of a knowledge-based system: understanding the application domain, modeling problem solving in that domain, developing the ontology and the reasoning rules, and testing the system. The book focuses on a special class of systems - learning assistants for evidence-based reasoning that learn complex problem solving expertise directly from human experts, support experts and non-experts in problem solving and decision making, and teach their problem solving expertise to students. A powerful learning agent shell, Disciple-EBR, is included with the book, enabling students, practitioners, and researchers to rapidly develop learning assistants in a wide variety of domains that require evidence-based reasoning, including intelligence analysis, cyber security, law, forensics, medicine, and education.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boicu, Mihai</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcu, Dorin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schum, David A.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107122567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781316388464</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781316388464
illustrated Not Illustrated
indexdate 2024-12-18T12:04:29Z
institution BVB
isbn 9781316388464
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xxiv, 455 Seiten)
psigel ZDB-20-CTM
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Cambridge University Press
record_format marc
spelling Tecuci, Gheorghe
Knowledge engineering building personal learning assistants for evidence-based reasoning Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum
New York Cambridge University Press 2016
1 Online-Ressource (xxiv, 455 Seiten)
txt
c
cr
This book presents a significant advancement in the theory and practice of knowledge engineering, the discipline concerned with the development of systems that use expert knowledge and reasoning to solve complex problems. It covers the main stages in the development of a knowledge-based system: understanding the application domain, modeling problem solving in that domain, developing the ontology and the reasoning rules, and testing the system. The book focuses on a special class of systems - learning assistants for evidence-based reasoning that learn complex problem solving expertise directly from human experts, support experts and non-experts in problem solving and decision making, and teach their problem solving expertise to students. A powerful learning agent shell, Disciple-EBR, is included with the book, enabling students, practitioners, and researchers to rapidly develop learning assistants in a wide variety of domains that require evidence-based reasoning, including intelligence analysis, cyber security, law, forensics, medicine, and education.
Boicu, Mihai
Marcu, Dorin
Schum, David A.
Erscheint auch als Druck-Ausgabe 9781107122567
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781316388464 Volltext
spellingShingle Tecuci, Gheorghe
Knowledge engineering building personal learning assistants for evidence-based reasoning
title Knowledge engineering building personal learning assistants for evidence-based reasoning
title_auth Knowledge engineering building personal learning assistants for evidence-based reasoning
title_exact_search Knowledge engineering building personal learning assistants for evidence-based reasoning
title_full Knowledge engineering building personal learning assistants for evidence-based reasoning Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum
title_fullStr Knowledge engineering building personal learning assistants for evidence-based reasoning Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum
title_full_unstemmed Knowledge engineering building personal learning assistants for evidence-based reasoning Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David Schum
title_short Knowledge engineering
title_sort knowledge engineering building personal learning assistants for evidence based reasoning
title_sub building personal learning assistants for evidence-based reasoning
url https://doi.org/10.1017/CBO9781316388464
work_keys_str_mv AT tecucigheorghe knowledgeengineeringbuildingpersonallearningassistantsforevidencebasedreasoning
AT boicumihai knowledgeengineeringbuildingpersonallearningassistantsforevidencebasedreasoning
AT marcudorin knowledgeengineeringbuildingpersonallearningassistantsforevidencebasedreasoning
AT schumdavida knowledgeengineeringbuildingpersonallearningassistantsforevidencebasedreasoning