Multiscale methods for Fredholm integral equations

The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chen, Zhongying 1946-
Weitere Verfasser: Micchelli, Charles A., Xu, Yuesheng
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2015
Schriftenreihe:Cambridge monographs on applied and computational mathematics 28
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781316216637
003 UkCbUP
005 20151005020621.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 140922s2015||||enk o ||1 0|eng|d
020 |a 9781316216637 
100 1 |a Chen, Zhongying  |d 1946- 
245 1 0 |a Multiscale methods for Fredholm integral equations  |c Zhongying Chen, Charles A. Micchelli, Yuesheng Xu 
264 1 |a Cambridge  |b Cambridge University Press  |c 2015 
300 |a 1 Online-Ressource (xiii, 536 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge monographs on applied and computational mathematics  |v 28 
520 |a The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates. 
700 1 |a Micchelli, Charles A. 
700 1 |a Xu, Yuesheng 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107103474 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9781316216637  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781316216637
_version_ 1818779681709621248
adam_text
any_adam_object
author Chen, Zhongying 1946-
author2 Micchelli, Charles A.
Xu, Yuesheng
author2_role

author2_variant c a m ca cam
y x yx
author_facet Chen, Zhongying 1946-
Micchelli, Charles A.
Xu, Yuesheng
author_role
author_sort Chen, Zhongying 1946-
author_variant z c zc
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9781316216637
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01854nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781316216637</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">140922s2015||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316216637</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Zhongying</subfield><subfield code="d">1946-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale methods for Fredholm integral equations</subfield><subfield code="c">Zhongying Chen, Charles A. Micchelli, Yuesheng Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 536 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">28</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micchelli, Charles A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuesheng</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107103474</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781316216637</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781316216637
illustrated Not Illustrated
indexdate 2024-12-18T12:04:29Z
institution BVB
isbn 9781316216637
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xiii, 536 Seiten)
psigel ZDB-20-CTM
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Cambridge University Press
record_format marc
series2 Cambridge monographs on applied and computational mathematics
spelling Chen, Zhongying 1946-
Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu
Cambridge Cambridge University Press 2015
1 Online-Ressource (xiii, 536 Seiten)
txt
c
cr
Cambridge monographs on applied and computational mathematics 28
The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.
Micchelli, Charles A.
Xu, Yuesheng
Erscheint auch als Druck-Ausgabe 9781107103474
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781316216637 Volltext
spellingShingle Chen, Zhongying 1946-
Multiscale methods for Fredholm integral equations
title Multiscale methods for Fredholm integral equations
title_auth Multiscale methods for Fredholm integral equations
title_exact_search Multiscale methods for Fredholm integral equations
title_full Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu
title_fullStr Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu
title_full_unstemmed Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu
title_short Multiscale methods for Fredholm integral equations
title_sort multiscale methods for fredholm integral equations
url https://doi.org/10.1017/CBO9781316216637
work_keys_str_mv AT chenzhongying multiscalemethodsforfredholmintegralequations
AT micchellicharlesa multiscalemethodsforfredholmintegralequations
AT xuyuesheng multiscalemethodsforfredholmintegralequations