Multiscale methods for Fredholm integral equations
The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
28 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781316216637 | ||
003 | UkCbUP | ||
005 | 20151005020621.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 140922s2015||||enk o ||1 0|eng|d | ||
020 | |a 9781316216637 | ||
100 | 1 | |a Chen, Zhongying |d 1946- | |
245 | 1 | 0 | |a Multiscale methods for Fredholm integral equations |c Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (xiii, 536 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge monographs on applied and computational mathematics |v 28 | |
520 | |a The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates. | ||
700 | 1 | |a Micchelli, Charles A. | |
700 | 1 | |a Xu, Yuesheng | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107103474 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781316216637 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781316216637 |
---|---|
_version_ | 1818779681709621248 |
adam_text | |
any_adam_object | |
author | Chen, Zhongying 1946- |
author2 | Micchelli, Charles A. Xu, Yuesheng |
author2_role | |
author2_variant | c a m ca cam y x yx |
author_facet | Chen, Zhongying 1946- Micchelli, Charles A. Xu, Yuesheng |
author_role | |
author_sort | Chen, Zhongying 1946- |
author_variant | z c zc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9781316216637 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01854nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781316216637</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">140922s2015||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316216637</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Zhongying</subfield><subfield code="d">1946-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale methods for Fredholm integral equations</subfield><subfield code="c">Zhongying Chen, Charles A. Micchelli, Yuesheng Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 536 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">28</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micchelli, Charles A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuesheng</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107103474</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781316216637</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781316216637 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:29Z |
institution | BVB |
isbn | 9781316216637 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 536 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Chen, Zhongying 1946- Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu Cambridge Cambridge University Press 2015 1 Online-Ressource (xiii, 536 Seiten) txt c cr Cambridge monographs on applied and computational mathematics 28 The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates. Micchelli, Charles A. Xu, Yuesheng Erscheint auch als Druck-Ausgabe 9781107103474 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781316216637 Volltext |
spellingShingle | Chen, Zhongying 1946- Multiscale methods for Fredholm integral equations |
title | Multiscale methods for Fredholm integral equations |
title_auth | Multiscale methods for Fredholm integral equations |
title_exact_search | Multiscale methods for Fredholm integral equations |
title_full | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_fullStr | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_full_unstemmed | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_short | Multiscale methods for Fredholm integral equations |
title_sort | multiscale methods for fredholm integral equations |
url | https://doi.org/10.1017/CBO9781316216637 |
work_keys_str_mv | AT chenzhongying multiscalemethodsforfredholmintegralequations AT micchellicharlesa multiscalemethodsforfredholmintegralequations AT xuyuesheng multiscalemethodsforfredholmintegralequations |