Quasi-interpolation
Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulat...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
37 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781139680523 | ||
003 | UkCbUP | ||
005 | 20220228165108.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 131223s2022||||enk o ||1 0|eng|d | ||
020 | |a 9781139680523 | ||
100 | 1 | |a Buhmann, M. D. |d 1963- | |
245 | 1 | 0 | |a Quasi-interpolation |c Martin Buhmann, Janin Jäger |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xiii, 275 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge monographs on applied and computational mathematics |v 37 | |
520 | |a Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering. | ||
700 | 1 | |a Jäger, Janin |d 1988- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107072633 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781139680523 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781139680523 |
---|---|
_version_ | 1818779688029388801 |
adam_text | |
any_adam_object | |
author | Buhmann, M. D. 1963- |
author2 | Jäger, Janin 1988- |
author2_role | |
author2_variant | j j jj |
author_facet | Buhmann, M. D. 1963- Jäger, Janin 1988- |
author_role | |
author_sort | Buhmann, M. D. 1963- |
author_variant | m d b md mdb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/9781139680523 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01845nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139680523</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20220228165108.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">131223s2022||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139680523</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buhmann, M. D.</subfield><subfield code="d">1963-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-interpolation</subfield><subfield code="c">Martin Buhmann, Janin Jäger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 275 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">37</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jäger, Janin</subfield><subfield code="d">1988-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107072633</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781139680523 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:35Z |
institution | BVB |
isbn | 9781139680523 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 275 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Buhmann, M. D. 1963- Quasi-interpolation Martin Buhmann, Janin Jäger Cambridge Cambridge University Press 2022 1 Online-Ressource (xiii, 275 Seiten) txt c cr Cambridge monographs on applied and computational mathematics 37 Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering. Jäger, Janin 1988- Erscheint auch als Druck-Ausgabe 9781107072633 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781139680523 Volltext |
spellingShingle | Buhmann, M. D. 1963- Quasi-interpolation |
title | Quasi-interpolation |
title_auth | Quasi-interpolation |
title_exact_search | Quasi-interpolation |
title_full | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_fullStr | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_full_unstemmed | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_short | Quasi-interpolation |
title_sort | quasi interpolation |
url | https://doi.org/10.1017/9781139680523 |
work_keys_str_mv | AT buhmannmd quasiinterpolation AT jagerjanin quasiinterpolation |