Quasi-interpolation

Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Buhmann, M. D. 1963-
Weitere Verfasser: Jäger, Janin 1988-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2022
Schriftenreihe:Cambridge monographs on applied and computational mathematics 37
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781139680523
003 UkCbUP
005 20220228165108.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 131223s2022||||enk o ||1 0|eng|d
020 |a 9781139680523 
100 1 |a Buhmann, M. D.  |d 1963- 
245 1 0 |a Quasi-interpolation  |c Martin Buhmann, Janin Jäger 
264 1 |a Cambridge  |b Cambridge University Press  |c 2022 
300 |a 1 Online-Ressource (xiii, 275 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge monographs on applied and computational mathematics  |v 37 
520 |a Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering. 
700 1 |a Jäger, Janin  |d 1988- 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107072633 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/9781139680523  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781139680523
_version_ 1818779688029388801
adam_text
any_adam_object
author Buhmann, M. D. 1963-
author2 Jäger, Janin 1988-
author2_role
author2_variant j j jj
author_facet Buhmann, M. D. 1963-
Jäger, Janin 1988-
author_role
author_sort Buhmann, M. D. 1963-
author_variant m d b md mdb
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/9781139680523
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01845nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139680523</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20220228165108.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">131223s2022||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139680523</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buhmann, M. D.</subfield><subfield code="d">1963-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-interpolation</subfield><subfield code="c">Martin Buhmann, Janin Jäger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 275 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">37</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jäger, Janin</subfield><subfield code="d">1988-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107072633</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781139680523
illustrated Not Illustrated
indexdate 2024-12-18T12:04:35Z
institution BVB
isbn 9781139680523
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xiii, 275 Seiten)
psigel ZDB-20-CTM
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Cambridge University Press
record_format marc
series2 Cambridge monographs on applied and computational mathematics
spelling Buhmann, M. D. 1963-
Quasi-interpolation Martin Buhmann, Janin Jäger
Cambridge Cambridge University Press 2022
1 Online-Ressource (xiii, 275 Seiten)
txt
c
cr
Cambridge monographs on applied and computational mathematics 37
Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.
Jäger, Janin 1988-
Erscheint auch als Druck-Ausgabe 9781107072633
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781139680523 Volltext
spellingShingle Buhmann, M. D. 1963-
Quasi-interpolation
title Quasi-interpolation
title_auth Quasi-interpolation
title_exact_search Quasi-interpolation
title_full Quasi-interpolation Martin Buhmann, Janin Jäger
title_fullStr Quasi-interpolation Martin Buhmann, Janin Jäger
title_full_unstemmed Quasi-interpolation Martin Buhmann, Janin Jäger
title_short Quasi-interpolation
title_sort quasi interpolation
url https://doi.org/10.1017/9781139680523
work_keys_str_mv AT buhmannmd quasiinterpolation
AT jagerjanin quasiinterpolation