Harmonic maps, loop groups, and integrable systems
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1997
|
Schriftenreihe: | London Mathematical Society student texts
38 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781139174848 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 111013s1997||||enk o ||1 0|eng|d | ||
020 | |a 9781139174848 | ||
100 | 1 | |a Guest, Martin A. | |
245 | 1 | 0 | |a Harmonic maps, loop groups, and integrable systems |c Martin A. Guest |
246 | 3 | |a Harmonic Maps, Loop Groups, & Integrable Systems | |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 Online-Ressource (xiii, 194 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society student texts |v 38 | |
520 | |a Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521580854 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521589321 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781139174848 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781139174848 |
---|---|
_version_ | 1818779682597765121 |
adam_text | |
any_adam_object | |
author | Guest, Martin A. |
author_facet | Guest, Martin A. |
author_role | |
author_sort | Guest, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9781139174848 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01642nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139174848</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">111013s1997||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139174848</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps, loop groups, and integrable systems</subfield><subfield code="c">Martin A. Guest</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Harmonic Maps, Loop Groups, & Integrable Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 194 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">38</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521580854</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521589321</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781139174848 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:30Z |
institution | BVB |
isbn | 9781139174848 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 194 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Guest, Martin A. Harmonic maps, loop groups, and integrable systems Martin A. Guest Harmonic Maps, Loop Groups, & Integrable Systems Cambridge Cambridge University Press 1997 1 Online-Ressource (xiii, 194 Seiten) txt c cr London Mathematical Society student texts 38 Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. Erscheint auch als Druck-Ausgabe 9780521580854 Erscheint auch als Druck-Ausgabe 9780521589321 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781139174848 Volltext |
spellingShingle | Guest, Martin A. Harmonic maps, loop groups, and integrable systems |
title | Harmonic maps, loop groups, and integrable systems |
title_alt | Harmonic Maps, Loop Groups, & Integrable Systems |
title_auth | Harmonic maps, loop groups, and integrable systems |
title_exact_search | Harmonic maps, loop groups, and integrable systems |
title_full | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_fullStr | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_full_unstemmed | Harmonic maps, loop groups, and integrable systems Martin A. Guest |
title_short | Harmonic maps, loop groups, and integrable systems |
title_sort | harmonic maps loop groups and integrable systems |
url | https://doi.org/10.1017/CBO9781139174848 |
work_keys_str_mv | AT guestmartina harmonicmapsloopgroupsandintegrablesystems AT guestmartina harmonicmapsloopgroupsintegrablesystems |