Harmonic maps, loop groups, and integrable systems

Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Guest, Martin A.
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1997
Schriftenreihe:London Mathematical Society student texts 38
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781139174848
003 UkCbUP
005 20151005020622.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 111013s1997||||enk o ||1 0|eng|d
020 |a 9781139174848 
100 1 |a Guest, Martin A. 
245 1 0 |a Harmonic maps, loop groups, and integrable systems  |c Martin A. Guest 
246 3 |a Harmonic Maps, Loop Groups, & Integrable Systems 
264 1 |a Cambridge  |b Cambridge University Press  |c 1997 
300 |a 1 Online-Ressource (xiii, 194 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a London Mathematical Society student texts  |v 38 
520 |a Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521580854 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521589321 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9781139174848  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781139174848
_version_ 1818779682597765121
adam_text
any_adam_object
author Guest, Martin A.
author_facet Guest, Martin A.
author_role
author_sort Guest, Martin A.
author_variant m a g ma mag
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9781139174848
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01642nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139174848</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">111013s1997||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139174848</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps, loop groups, and integrable systems</subfield><subfield code="c">Martin A. Guest</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Harmonic Maps, Loop Groups, &amp; Integrable Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 194 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">38</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521580854</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521589321</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781139174848</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781139174848
illustrated Not Illustrated
indexdate 2024-12-18T12:04:30Z
institution BVB
isbn 9781139174848
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xiii, 194 Seiten)
psigel ZDB-20-CTM
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society student texts
spelling Guest, Martin A.
Harmonic maps, loop groups, and integrable systems Martin A. Guest
Harmonic Maps, Loop Groups, & Integrable Systems
Cambridge Cambridge University Press 1997
1 Online-Ressource (xiii, 194 Seiten)
txt
c
cr
London Mathematical Society student texts 38
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.
Erscheint auch als Druck-Ausgabe 9780521580854
Erscheint auch als Druck-Ausgabe 9780521589321
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781139174848 Volltext
spellingShingle Guest, Martin A.
Harmonic maps, loop groups, and integrable systems
title Harmonic maps, loop groups, and integrable systems
title_alt Harmonic Maps, Loop Groups, & Integrable Systems
title_auth Harmonic maps, loop groups, and integrable systems
title_exact_search Harmonic maps, loop groups, and integrable systems
title_full Harmonic maps, loop groups, and integrable systems Martin A. Guest
title_fullStr Harmonic maps, loop groups, and integrable systems Martin A. Guest
title_full_unstemmed Harmonic maps, loop groups, and integrable systems Martin A. Guest
title_short Harmonic maps, loop groups, and integrable systems
title_sort harmonic maps loop groups and integrable systems
url https://doi.org/10.1017/CBO9781139174848
work_keys_str_mv AT guestmartina harmonicmapsloopgroupsandintegrablesystems
AT guestmartina harmonicmapsloopgroupsintegrablesystems