Deep learning on graphs

Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ma, Yao
Weitere Verfasser: Tang, Jiliang
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2021
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781108924184
003 UkCbUP
005 20211014133629.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 200422s2021||||enk o ||1 0|eng|d
020 |a 9781108924184 
100 1 |a Ma, Yao 
245 1 0 |a Deep learning on graphs  |c Yao Ma, Jiliang Tang 
264 1 |a Cambridge  |b Cambridge University Press  |c 2021 
300 |a 1 Online-Ressource (xviii, 320 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
520 |a Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines. 
700 1 |a Tang, Jiliang 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781108831741 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/9781108924184  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781108924184
_version_ 1818779679720472577
adam_text
any_adam_object
author Ma, Yao
author2 Tang, Jiliang
author2_role
author2_variant j t jt
author_facet Ma, Yao
Tang, Jiliang
author_role
author_sort Ma, Yao
author_variant y m ym
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/9781108924184
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01676nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108924184</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20211014133629.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">200422s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108924184</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yao</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning on graphs</subfield><subfield code="c">Yao Ma, Jiliang Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 320 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jiliang</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108831741</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781108924184
illustrated Not Illustrated
indexdate 2024-12-18T12:04:27Z
institution BVB
isbn 9781108924184
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xviii, 320 Seiten)
psigel ZDB-20-CTM
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Cambridge University Press
record_format marc
spelling Ma, Yao
Deep learning on graphs Yao Ma, Jiliang Tang
Cambridge Cambridge University Press 2021
1 Online-Ressource (xviii, 320 Seiten)
txt
c
cr
Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines.
Tang, Jiliang
Erscheint auch als Druck-Ausgabe 9781108831741
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781108924184 Volltext
spellingShingle Ma, Yao
Deep learning on graphs
title Deep learning on graphs
title_auth Deep learning on graphs
title_exact_search Deep learning on graphs
title_full Deep learning on graphs Yao Ma, Jiliang Tang
title_fullStr Deep learning on graphs Yao Ma, Jiliang Tang
title_full_unstemmed Deep learning on graphs Yao Ma, Jiliang Tang
title_short Deep learning on graphs
title_sort deep learning on graphs
url https://doi.org/10.1017/9781108924184
work_keys_str_mv AT mayao deeplearningongraphs
AT tangjiliang deeplearningongraphs