Deep learning on graphs
Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established meth...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108924184 | ||
003 | UkCbUP | ||
005 | 20211014133629.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 200422s2021||||enk o ||1 0|eng|d | ||
020 | |a 9781108924184 | ||
100 | 1 | |a Ma, Yao | |
245 | 1 | 0 | |a Deep learning on graphs |c Yao Ma, Jiliang Tang |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xviii, 320 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines. | ||
700 | 1 | |a Tang, Jiliang | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108831741 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108924184 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108924184 |
---|---|
_version_ | 1818779679720472577 |
adam_text | |
any_adam_object | |
author | Ma, Yao |
author2 | Tang, Jiliang |
author2_role | |
author2_variant | j t jt |
author_facet | Ma, Yao Tang, Jiliang |
author_role | |
author_sort | Ma, Yao |
author_variant | y m ym |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/9781108924184 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01676nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108924184</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20211014133629.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">200422s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108924184</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yao</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning on graphs</subfield><subfield code="c">Yao Ma, Jiliang Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 320 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jiliang</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108831741</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108924184 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:27Z |
institution | BVB |
isbn | 9781108924184 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 320 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ma, Yao Deep learning on graphs Yao Ma, Jiliang Tang Cambridge Cambridge University Press 2021 1 Online-Ressource (xviii, 320 Seiten) txt c cr Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines. Tang, Jiliang Erscheint auch als Druck-Ausgabe 9781108831741 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781108924184 Volltext |
spellingShingle | Ma, Yao Deep learning on graphs |
title | Deep learning on graphs |
title_auth | Deep learning on graphs |
title_exact_search | Deep learning on graphs |
title_full | Deep learning on graphs Yao Ma, Jiliang Tang |
title_fullStr | Deep learning on graphs Yao Ma, Jiliang Tang |
title_full_unstemmed | Deep learning on graphs Yao Ma, Jiliang Tang |
title_short | Deep learning on graphs |
title_sort | deep learning on graphs |
url | https://doi.org/10.1017/9781108924184 |
work_keys_str_mv | AT mayao deeplearningongraphs AT tangjiliang deeplearningongraphs |