The shortest path to network geometry a practical guide to basic models and applications

Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Serrano, M. Ángeles
Weitere Verfasser: Boguñá, Marián
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2021
Schriftenreihe:Cambridge elements. Elements in structure and dynamics of complex networks
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781108865791
003 UkCbUP
005 20211206213957.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 190820s2021||||enk o ||1 0|eng|d
020 |a 9781108865791 
100 1 |a Serrano, M. Ángeles 
245 1 4 |a The shortest path to network geometry  |b a practical guide to basic models and applications  |c M. Ángeles Serrano, Marián Boguñá 
264 1 |a Cambridge  |b Cambridge University Press  |c 2021 
300 |a 1 Online-Ressource (44 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 0 |a Cambridge elements. Elements in structure and dynamics of complex networks  |x 2516-5763 
520 |a Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization. 
700 1 |a Boguñá, Marián 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781108791083 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/9781108865791  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781108865791
_version_ 1818779688075526144
adam_text
any_adam_object
author Serrano, M. Ángeles
author2 Boguñá, Marián
author2_role
author2_variant m b mb
author_facet Serrano, M. Ángeles
Boguñá, Marián
author_role
author_sort Serrano, M. Ángeles
author_variant m a s ma mas
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/9781108865791
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01886nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108865791</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20211206213957.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">190820s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108865791</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serrano, M. Ángeles</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The shortest path to network geometry</subfield><subfield code="b">a practical guide to basic models and applications</subfield><subfield code="c">M. Ángeles Serrano, Marián Boguñá</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (44 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements. Elements in structure and dynamics of complex networks</subfield><subfield code="x">2516-5763</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boguñá, Marián</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108791083</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108865791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781108865791
illustrated Not Illustrated
indexdate 2024-12-18T12:04:35Z
institution BVB
isbn 9781108865791
issn 2516-5763
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (44 Seiten)
psigel ZDB-20-CTM
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Cambridge University Press
record_format marc
series2 Cambridge elements. Elements in structure and dynamics of complex networks
spelling Serrano, M. Ángeles
The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá
Cambridge Cambridge University Press 2021
1 Online-Ressource (44 Seiten)
txt
c
cr
Cambridge elements. Elements in structure and dynamics of complex networks 2516-5763
Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.
Boguñá, Marián
Erscheint auch als Druck-Ausgabe 9781108791083
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781108865791 Volltext
spellingShingle Serrano, M. Ángeles
The shortest path to network geometry a practical guide to basic models and applications
title The shortest path to network geometry a practical guide to basic models and applications
title_auth The shortest path to network geometry a practical guide to basic models and applications
title_exact_search The shortest path to network geometry a practical guide to basic models and applications
title_full The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá
title_fullStr The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá
title_full_unstemmed The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá
title_short The shortest path to network geometry
title_sort shortest path to network geometry a practical guide to basic models and applications
title_sub a practical guide to basic models and applications
url https://doi.org/10.1017/9781108865791
work_keys_str_mv AT serranomangeles theshortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications
AT bogunamarian theshortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications
AT serranomangeles shortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications
AT bogunamarian shortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications