The shortest path to network geometry a practical guide to basic models and applications
Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schriftenreihe: | Cambridge elements. Elements in structure and dynamics of complex networks
|
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108865791 | ||
003 | UkCbUP | ||
005 | 20211206213957.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 190820s2021||||enk o ||1 0|eng|d | ||
020 | |a 9781108865791 | ||
100 | 1 | |a Serrano, M. Ángeles | |
245 | 1 | 4 | |a The shortest path to network geometry |b a practical guide to basic models and applications |c M. Ángeles Serrano, Marián Boguñá |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (44 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 0 | |a Cambridge elements. Elements in structure and dynamics of complex networks |x 2516-5763 | |
520 | |a Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization. | ||
700 | 1 | |a Boguñá, Marián | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108791083 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108865791 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108865791 |
---|---|
_version_ | 1818779688075526144 |
adam_text | |
any_adam_object | |
author | Serrano, M. Ángeles |
author2 | Boguñá, Marián |
author2_role | |
author2_variant | m b mb |
author_facet | Serrano, M. Ángeles Boguñá, Marián |
author_role | |
author_sort | Serrano, M. Ángeles |
author_variant | m a s ma mas |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/9781108865791 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01886nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108865791</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20211206213957.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">190820s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108865791</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serrano, M. Ángeles</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The shortest path to network geometry</subfield><subfield code="b">a practical guide to basic models and applications</subfield><subfield code="c">M. Ángeles Serrano, Marián Boguñá</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (44 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements. Elements in structure and dynamics of complex networks</subfield><subfield code="x">2516-5763</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boguñá, Marián</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108791083</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108865791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108865791 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:35Z |
institution | BVB |
isbn | 9781108865791 |
issn | 2516-5763 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (44 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements. Elements in structure and dynamics of complex networks |
spelling | Serrano, M. Ángeles The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá Cambridge Cambridge University Press 2021 1 Online-Ressource (44 Seiten) txt c cr Cambridge elements. Elements in structure and dynamics of complex networks 2516-5763 Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization. Boguñá, Marián Erscheint auch als Druck-Ausgabe 9781108791083 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781108865791 Volltext |
spellingShingle | Serrano, M. Ángeles The shortest path to network geometry a practical guide to basic models and applications |
title | The shortest path to network geometry a practical guide to basic models and applications |
title_auth | The shortest path to network geometry a practical guide to basic models and applications |
title_exact_search | The shortest path to network geometry a practical guide to basic models and applications |
title_full | The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá |
title_fullStr | The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá |
title_full_unstemmed | The shortest path to network geometry a practical guide to basic models and applications M. Ángeles Serrano, Marián Boguñá |
title_short | The shortest path to network geometry |
title_sort | shortest path to network geometry a practical guide to basic models and applications |
title_sub | a practical guide to basic models and applications |
url | https://doi.org/10.1017/9781108865791 |
work_keys_str_mv | AT serranomangeles theshortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications AT bogunamarian theshortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications AT serranomangeles shortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications AT bogunamarian shortestpathtonetworkgeometryapracticalguidetobasicmodelsandapplications |