Computational approaches to the network science of teams

Business operations in large organizations today involve massive, interactive, and layered networks of teams and personnel collaborating across hierarchies and countries on complex tasks. To optimize productivity, businesses need to know: what communication patterns do high-performing teams have in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Li, Liangyue 1989-
Weitere Verfasser: Tong, Hanghang
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2021
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781108683173
003 UkCbUP
005 20201123134455.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 181023s2021||||enk o ||1 0|eng|d
020 |a 9781108683173 
100 1 |a Li, Liangyue  |d 1989- 
245 1 0 |a Computational approaches to the network science of teams  |c Liangyue Li, Hanghang Tong 
264 1 |a Cambridge  |b Cambridge University Press  |c 2021 
300 |a 1 Online-Ressource (viii, 158 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
520 |a Business operations in large organizations today involve massive, interactive, and layered networks of teams and personnel collaborating across hierarchies and countries on complex tasks. To optimize productivity, businesses need to know: what communication patterns do high-performing teams have in common? Is it possible to predict a team's performance before it starts work on a project? How can productive team behavior be fostered? This comprehensive review for researchers and practitioners in data mining and social networks surveys recent progress in the emerging field of network science of teams. Focusing on the underlying social network structure, the authors present models and algorithms characterizing, predicting, optimizing, and explaining team performance, along with key applications, open challenges, and future trends. 
700 1 |a Tong, Hanghang 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781108498548 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/9781108683173  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781108683173
_version_ 1818779680068599808
adam_text
any_adam_object
author Li, Liangyue 1989-
author2 Tong, Hanghang
author2_role
author2_variant h t ht
author_facet Li, Liangyue 1989-
Tong, Hanghang
author_role
author_sort Li, Liangyue 1989-
author_variant l l ll
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/9781108683173
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01584nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108683173</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20201123134455.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">181023s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108683173</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Liangyue</subfield><subfield code="d">1989-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational approaches to the network science of teams</subfield><subfield code="c">Liangyue Li, Hanghang Tong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 158 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Business operations in large organizations today involve massive, interactive, and layered networks of teams and personnel collaborating across hierarchies and countries on complex tasks. To optimize productivity, businesses need to know: what communication patterns do high-performing teams have in common? Is it possible to predict a team's performance before it starts work on a project? How can productive team behavior be fostered? This comprehensive review for researchers and practitioners in data mining and social networks surveys recent progress in the emerging field of network science of teams. Focusing on the underlying social network structure, the authors present models and algorithms characterizing, predicting, optimizing, and explaining team performance, along with key applications, open challenges, and future trends.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Hanghang</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108498548</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108683173</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781108683173
illustrated Not Illustrated
indexdate 2024-12-18T12:04:28Z
institution BVB
isbn 9781108683173
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (viii, 158 Seiten)
psigel ZDB-20-CTM
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Cambridge University Press
record_format marc
spelling Li, Liangyue 1989-
Computational approaches to the network science of teams Liangyue Li, Hanghang Tong
Cambridge Cambridge University Press 2021
1 Online-Ressource (viii, 158 Seiten)
txt
c
cr
Business operations in large organizations today involve massive, interactive, and layered networks of teams and personnel collaborating across hierarchies and countries on complex tasks. To optimize productivity, businesses need to know: what communication patterns do high-performing teams have in common? Is it possible to predict a team's performance before it starts work on a project? How can productive team behavior be fostered? This comprehensive review for researchers and practitioners in data mining and social networks surveys recent progress in the emerging field of network science of teams. Focusing on the underlying social network structure, the authors present models and algorithms characterizing, predicting, optimizing, and explaining team performance, along with key applications, open challenges, and future trends.
Tong, Hanghang
Erscheint auch als Druck-Ausgabe 9781108498548
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781108683173 Volltext
spellingShingle Li, Liangyue 1989-
Computational approaches to the network science of teams
title Computational approaches to the network science of teams
title_auth Computational approaches to the network science of teams
title_exact_search Computational approaches to the network science of teams
title_full Computational approaches to the network science of teams Liangyue Li, Hanghang Tong
title_fullStr Computational approaches to the network science of teams Liangyue Li, Hanghang Tong
title_full_unstemmed Computational approaches to the network science of teams Liangyue Li, Hanghang Tong
title_short Computational approaches to the network science of teams
title_sort computational approaches to the network science of teams
url https://doi.org/10.1017/9781108683173
work_keys_str_mv AT liliangyue computationalapproachestothenetworkscienceofteams
AT tonghanghang computationalapproachestothenetworkscienceofteams