Orthogonal polynomials of several variables

Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dunkl, Charles F. 1941-
Weitere Verfasser: Xu, Yuan 1957-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2014
Ausgabe:Second edition.
Schriftenreihe:Encyclopedia of mathematics and its applications volume 155
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781107786134
003 UkCbUP
005 20151005020622.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 131216s2014||||enk o ||1 0|eng|d
020 |a 9781107786134 
100 1 |a Dunkl, Charles F.  |d 1941- 
245 1 0 |a Orthogonal polynomials of several variables  |c Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon 
250 |a Second edition. 
264 1 |a Cambridge  |b Cambridge University Press  |c 2014 
300 |a 1 Online-Ressource (xvii, 420 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Encyclopedia of mathematics and its applications  |v volume 155 
520 |a Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers. 
700 1 |a Xu, Yuan  |d 1957- 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107071896 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9781107786134  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781107786134
_version_ 1818779683184967681
adam_text
any_adam_object
author Dunkl, Charles F. 1941-
author2 Xu, Yuan 1957-
author2_role
author2_variant y x yx
author_facet Dunkl, Charles F. 1941-
Xu, Yuan 1957-
author_role
author_sort Dunkl, Charles F. 1941-
author_variant c f d cf cfd
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9781107786134
edition Second edition.
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01888nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781107786134</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">131216s2014||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107786134</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunkl, Charles F.</subfield><subfield code="d">1941-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials of several variables</subfield><subfield code="c">Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 420 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 155</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuan</subfield><subfield code="d">1957-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107071896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781107786134</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781107786134
illustrated Not Illustrated
indexdate 2024-12-18T12:04:31Z
institution BVB
isbn 9781107786134
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xvii, 420 Seiten)
psigel ZDB-20-CTM
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Cambridge University Press
record_format marc
series2 Encyclopedia of mathematics and its applications
spelling Dunkl, Charles F. 1941-
Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
Second edition.
Cambridge Cambridge University Press 2014
1 Online-Ressource (xvii, 420 Seiten)
txt
c
cr
Encyclopedia of mathematics and its applications volume 155
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.
Xu, Yuan 1957-
Erscheint auch als Druck-Ausgabe 9781107071896
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781107786134 Volltext
spellingShingle Dunkl, Charles F. 1941-
Orthogonal polynomials of several variables
title Orthogonal polynomials of several variables
title_auth Orthogonal polynomials of several variables
title_exact_search Orthogonal polynomials of several variables
title_full Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
title_fullStr Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
title_full_unstemmed Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon
title_short Orthogonal polynomials of several variables
title_sort orthogonal polynomials of several variables
url https://doi.org/10.1017/CBO9781107786134
work_keys_str_mv AT dunklcharlesf orthogonalpolynomialsofseveralvariables
AT xuyuan orthogonalpolynomialsofseveralvariables