Orthogonal polynomials of several variables
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains....
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Ausgabe: | Second edition. |
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 155 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781107786134 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 131216s2014||||enk o ||1 0|eng|d | ||
020 | |a 9781107786134 | ||
100 | 1 | |a Dunkl, Charles F. |d 1941- | |
245 | 1 | 0 | |a Orthogonal polynomials of several variables |c Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
250 | |a Second edition. | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 Online-Ressource (xvii, 420 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v volume 155 | |
520 | |a Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers. | ||
700 | 1 | |a Xu, Yuan |d 1957- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107071896 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781107786134 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781107786134 |
---|---|
_version_ | 1818779683184967681 |
adam_text | |
any_adam_object | |
author | Dunkl, Charles F. 1941- |
author2 | Xu, Yuan 1957- |
author2_role | |
author2_variant | y x yx |
author_facet | Dunkl, Charles F. 1941- Xu, Yuan 1957- |
author_role | |
author_sort | Dunkl, Charles F. 1941- |
author_variant | c f d cf cfd |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9781107786134 |
edition | Second edition. |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01888nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781107786134</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">131216s2014||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107786134</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunkl, Charles F.</subfield><subfield code="d">1941-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials of several variables</subfield><subfield code="c">Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 420 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 155</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuan</subfield><subfield code="d">1957-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107071896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781107786134</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781107786134 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:31Z |
institution | BVB |
isbn | 9781107786134 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 420 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Dunkl, Charles F. 1941- Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon Second edition. Cambridge Cambridge University Press 2014 1 Online-Ressource (xvii, 420 Seiten) txt c cr Encyclopedia of mathematics and its applications volume 155 Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers. Xu, Yuan 1957- Erscheint auch als Druck-Ausgabe 9781107071896 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9781107786134 Volltext |
spellingShingle | Dunkl, Charles F. 1941- Orthogonal polynomials of several variables |
title | Orthogonal polynomials of several variables |
title_auth | Orthogonal polynomials of several variables |
title_exact_search | Orthogonal polynomials of several variables |
title_full | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_fullStr | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_full_unstemmed | Orthogonal polynomials of several variables Charles F. Dunkl, University of Virginia, Yuan Xu, University of Oregon |
title_short | Orthogonal polynomials of several variables |
title_sort | orthogonal polynomials of several variables |
url | https://doi.org/10.1017/CBO9781107786134 |
work_keys_str_mv | AT dunklcharlesf orthogonalpolynomialsofseveralvariables AT xuyuan orthogonalpolynomialsofseveralvariables |