Inverse problems and data assimilation

This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sanz-Alonso, Daniel 1989-
Weitere Verfasser: Stuart, Andrew, Taeb, Armeen
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2023
Schriftenreihe:London Mathematical Society student texts 107
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9781009414319
003 UkCbUP
005 20230731021710.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 230215s2023||||enk o ||1 0|eng|d
020 |a 9781009414319 
100 1 |a Sanz-Alonso, Daniel  |d 1989- 
245 1 0 |a Inverse problems and data assimilation  |c Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb 
264 1 |a Cambridge  |b Cambridge University Press  |c 2023 
300 |a 1 Online-Ressource (xvi, 210 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a London Mathematical Society student texts  |v 107 
520 |a This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study. 
700 1 |a Stuart, Andrew 
700 1 |a Taeb, Armeen 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781009414296 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781009414326 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/9781009414319  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9781009414319
_version_ 1818779678930894848
adam_text
any_adam_object
author Sanz-Alonso, Daniel 1989-
author2 Stuart, Andrew
Taeb, Armeen
author2_role

author2_variant a s as
a t at
author_facet Sanz-Alonso, Daniel 1989-
Stuart, Andrew
Taeb, Armeen
author_role
author_sort Sanz-Alonso, Daniel 1989-
author_variant d s a dsa
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/9781009414319
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01879nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009414319</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20230731021710.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">230215s2023||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009414319</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanz-Alonso, Daniel</subfield><subfield code="d">1989-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse problems and data assimilation</subfield><subfield code="c">Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 210 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">107</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stuart, Andrew</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taeb, Armeen</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009414296</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009414326</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009414319</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9781009414319
illustrated Not Illustrated
indexdate 2024-12-18T12:04:26Z
institution BVB
isbn 9781009414319
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xvi, 210 Seiten)
psigel ZDB-20-CTM
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society student texts
spelling Sanz-Alonso, Daniel 1989-
Inverse problems and data assimilation Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb
Cambridge Cambridge University Press 2023
1 Online-Ressource (xvi, 210 Seiten)
txt
c
cr
London Mathematical Society student texts 107
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
Stuart, Andrew
Taeb, Armeen
Erscheint auch als Druck-Ausgabe 9781009414296
Erscheint auch als Druck-Ausgabe 9781009414326
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781009414319 Volltext
spellingShingle Sanz-Alonso, Daniel 1989-
Inverse problems and data assimilation
title Inverse problems and data assimilation
title_auth Inverse problems and data assimilation
title_exact_search Inverse problems and data assimilation
title_full Inverse problems and data assimilation Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb
title_fullStr Inverse problems and data assimilation Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb
title_full_unstemmed Inverse problems and data assimilation Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb
title_short Inverse problems and data assimilation
title_sort inverse problems and data assimilation
url https://doi.org/10.1017/9781009414319
work_keys_str_mv AT sanzalonsodaniel inverseproblemsanddataassimilation
AT stuartandrew inverseproblemsanddataassimilation
AT taebarmeen inverseproblemsanddataassimilation