Harmonic functions and random walks on groups
Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern v...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2024
|
Schriftenreihe: | Cambridge studies in advanced mathematics
213 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009128391 | ||
003 | UkCbUP | ||
005 | 20240702105852.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 210627s2024||||enk o ||1 0|eng|d | ||
020 | |a 9781009128391 | ||
100 | 1 | |a Yadin, Ariel | |
245 | 1 | 0 | |a Harmonic functions and random walks on groups |c Ariel Yadin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (xix, 381 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 213 | |
520 | |a Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet-Deny Theorem, the Milnor-Wolf Theorem, and a complete proof of Gromov's Theorem on polynomial growth groups. The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009123181 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781009128391 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009128391 |
---|---|
_version_ | 1818779678651973633 |
adam_text | |
any_adam_object | |
author | Yadin, Ariel |
author_facet | Yadin, Ariel |
author_role | |
author_sort | Yadin, Ariel |
author_variant | a y ay |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/9781009128391 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01673nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009128391</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20240702105852.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">210627s2024||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009128391</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yadin, Ariel</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic functions and random walks on groups</subfield><subfield code="c">Ariel Yadin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 381 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">213</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet-Deny Theorem, the Milnor-Wolf Theorem, and a complete proof of Gromov's Theorem on polynomial growth groups. The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009123181</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009128391</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009128391 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:26Z |
institution | BVB |
isbn | 9781009128391 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 381 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Yadin, Ariel Harmonic functions and random walks on groups Ariel Yadin Cambridge Cambridge University Press 2024 1 Online-Ressource (xix, 381 Seiten) txt c cr Cambridge studies in advanced mathematics 213 Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet-Deny Theorem, the Milnor-Wolf Theorem, and a complete proof of Gromov's Theorem on polynomial growth groups. The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research. Erscheint auch als Druck-Ausgabe 9781009123181 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/9781009128391 Volltext |
spellingShingle | Yadin, Ariel Harmonic functions and random walks on groups |
title | Harmonic functions and random walks on groups |
title_auth | Harmonic functions and random walks on groups |
title_exact_search | Harmonic functions and random walks on groups |
title_full | Harmonic functions and random walks on groups Ariel Yadin |
title_fullStr | Harmonic functions and random walks on groups Ariel Yadin |
title_full_unstemmed | Harmonic functions and random walks on groups Ariel Yadin |
title_short | Harmonic functions and random walks on groups |
title_sort | harmonic functions and random walks on groups |
url | https://doi.org/10.1017/9781009128391 |
work_keys_str_mv | AT yadinariel harmonicfunctionsandrandomwalksongroups |