Data driven identification of networks of dynamic systems
This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions....
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009026338 | ||
003 | UkCbUP | ||
005 | 20220507163805.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 201127s2022||||enk o ||1 0|eng|d | ||
020 | |a 9781009026338 | ||
100 | 1 | |a Verhaegen, M. | |
245 | 1 | 0 | |a Data driven identification of networks of dynamic systems |c Michel Verhaegen, Chengpu Yu, Baptiste Sinquin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xviii, 267 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems. | ||
700 | 1 | |a Sinquin, Baptiste |d 1991- | |
700 | 1 | |a Yu, Chengpu |d 1984- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781316515709 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://www.cambridge.org/core/product/identifier/9781009026338/type/BOOK |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009026338 |
---|---|
_version_ | 1818779687979057153 |
adam_text | |
any_adam_object | |
author | Verhaegen, M. |
author2 | Sinquin, Baptiste 1991- Yu, Chengpu 1984- |
author2_role | |
author2_variant | b s bs c y cy |
author_facet | Verhaegen, M. Sinquin, Baptiste 1991- Yu, Chengpu 1984- |
author_role | |
author_sort | Verhaegen, M. |
author_variant | m v mv |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01886nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009026338</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20220507163805.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">201127s2022||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009026338</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Verhaegen, M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data driven identification of networks of dynamic systems</subfield><subfield code="c">Michel Verhaegen, Chengpu Yu, Baptiste Sinquin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 267 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sinquin, Baptiste</subfield><subfield code="d">1991-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Chengpu</subfield><subfield code="d">1984-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781316515709</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://www.cambridge.org/core/product/identifier/9781009026338/type/BOOK</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009026338 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:35Z |
institution | BVB |
isbn | 9781009026338 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 267 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Verhaegen, M. Data driven identification of networks of dynamic systems Michel Verhaegen, Chengpu Yu, Baptiste Sinquin Cambridge Cambridge University Press 2022 1 Online-Ressource (xviii, 267 Seiten) txt c cr This comprehensive text provides an excellent introduction to the state of the art in the identification of network-connected systems. It covers models and methods in detail, includes a case study showing how many of these methods are applied in adaptive optics and addresses open research questions. Specific models covered include generic modelling for MIMO LTI systems, signal flow models of dynamic networks and models of networks of local LTI systems. A variety of different identification methods are discussed, including identification of signal flow dynamics networks, subspace-like identification of multi-dimensional systems and subspace identification of local systems in an NDS. Researchers working in system identification and/or networked systems will appreciate the comprehensive overview provided, and the emphasis on algorithm design will interest those wishing to test the theory on real-life applications. This is the ideal text for researchers and graduate students interested in system identification for networked systems. Sinquin, Baptiste 1991- Yu, Chengpu 1984- Erscheint auch als Druck-Ausgabe 9781316515709 TUM01 ZDB-20-CTM TUM_PDA_CTM https://www.cambridge.org/core/product/identifier/9781009026338/type/BOOK Volltext |
spellingShingle | Verhaegen, M. Data driven identification of networks of dynamic systems |
title | Data driven identification of networks of dynamic systems |
title_auth | Data driven identification of networks of dynamic systems |
title_exact_search | Data driven identification of networks of dynamic systems |
title_full | Data driven identification of networks of dynamic systems Michel Verhaegen, Chengpu Yu, Baptiste Sinquin |
title_fullStr | Data driven identification of networks of dynamic systems Michel Verhaegen, Chengpu Yu, Baptiste Sinquin |
title_full_unstemmed | Data driven identification of networks of dynamic systems Michel Verhaegen, Chengpu Yu, Baptiste Sinquin |
title_short | Data driven identification of networks of dynamic systems |
title_sort | data driven identification of networks of dynamic systems |
url | https://www.cambridge.org/core/product/identifier/9781009026338/type/BOOK |
work_keys_str_mv | AT verhaegenm datadrivenidentificationofnetworksofdynamicsystems AT sinquinbaptiste datadrivenidentificationofnetworksofdynamicsystems AT yuchengpu datadrivenidentificationofnetworksofdynamicsystems |