Introduction to measure and probability

The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kingman, J. F. C.
Weitere Verfasser: Taylor, S. J.
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1966
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511897214
003 UkCbUP
005 20151005020623.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 101123s1966||||enk o ||1 0|eng|d
020 |a 9780511897214 
100 1 |a Kingman, J. F. C. 
245 1 0 |a Introduction to measure and probability  |c by J.F.C. Kingman and S.J. Taylor 
246 3 |a Introdction to Measure & Probability 
264 1 |a Cambridge  |b Cambridge University Press  |c 1966 
300 |a 1 Online-Ressource (x, 401 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
520 |a The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development.  
700 1 |a Taylor, S. J. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521058889 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521090322 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511897214  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511897214
_version_ 1818779686664142849
adam_text
any_adam_object
author Kingman, J. F. C.
author2 Taylor, S. J.
author2_role
author2_variant s j t sj sjt
author_facet Kingman, J. F. C.
Taylor, S. J.
author_role
author_sort Kingman, J. F. C.
author_variant j f c k jfc jfck
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511897214
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01916nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511897214</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">101123s1966||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511897214</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kingman, J. F. C.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to measure and probability</subfield><subfield code="c">by J.F.C. Kingman and S.J. Taylor</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Introdction to Measure &amp; Probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 401 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development. </subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, S. J.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521058889</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521090322</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511897214</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511897214
illustrated Not Illustrated
indexdate 2024-12-18T12:04:34Z
institution BVB
isbn 9780511897214
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (x, 401 Seiten)
psigel ZDB-20-CTM
publishDate 1966
publishDateSearch 1966
publishDateSort 1966
publisher Cambridge University Press
record_format marc
spelling Kingman, J. F. C.
Introduction to measure and probability by J.F.C. Kingman and S.J. Taylor
Introdction to Measure & Probability
Cambridge Cambridge University Press 1966
1 Online-Ressource (x, 401 Seiten)
txt
c
cr
The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development.
Taylor, S. J.
Erscheint auch als Druck-Ausgabe 9780521058889
Erscheint auch als Druck-Ausgabe 9780521090322
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511897214 Volltext
spellingShingle Kingman, J. F. C.
Introduction to measure and probability
title Introduction to measure and probability
title_alt Introdction to Measure & Probability
title_auth Introduction to measure and probability
title_exact_search Introduction to measure and probability
title_full Introduction to measure and probability by J.F.C. Kingman and S.J. Taylor
title_fullStr Introduction to measure and probability by J.F.C. Kingman and S.J. Taylor
title_full_unstemmed Introduction to measure and probability by J.F.C. Kingman and S.J. Taylor
title_short Introduction to measure and probability
title_sort introduction to measure and probability
url https://doi.org/10.1017/CBO9780511897214
work_keys_str_mv AT kingmanjfc introductiontomeasureandprobability
AT taylorsj introductiontomeasureandprobability
AT kingmanjfc introdctiontomeasureprobability
AT taylorsj introdctiontomeasureprobability