Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems
This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the f...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 136 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511760631 | ||
003 | UkCbUP | ||
005 | 20151005020624.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 100506s2010||||enk o ||1 0|eng|d | ||
020 | |a 9780511760631 | ||
100 | 1 | |a Kristály, Alexandru | |
245 | 1 | 0 | |a Variational principles in mathematical physics, geometry, and economics |b qualitative analysis of nonlinear equations and unilateral problems |c Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
246 | 3 | |a Variational Principles in Mathematical Physics, Geometry, & Economics | |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 Online-Ressource (xv, 368 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v volume 136 | |
520 | |a This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis. | ||
700 | 1 | |a Rădulescu, Vicenţiu D. |d 1958- | |
700 | 1 | |a Varga, Csaba Gyorgy | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521117821 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511760631 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511760631 |
---|---|
_version_ | 1818779683518414848 |
adam_text | |
any_adam_object | |
author | Kristály, Alexandru |
author2 | Rădulescu, Vicenţiu D. 1958- Varga, Csaba Gyorgy |
author2_role | |
author2_variant | v d r vd vdr c g v cg cgv |
author_facet | Kristály, Alexandru Rădulescu, Vicenţiu D. 1958- Varga, Csaba Gyorgy |
author_role | |
author_sort | Kristály, Alexandru |
author_variant | a k ak |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511760631 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02097nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511760631</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020624.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">100506s2010||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511760631</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kristály, Alexandru</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational principles in mathematical physics, geometry, and economics</subfield><subfield code="b">qualitative analysis of nonlinear equations and unilateral problems</subfield><subfield code="c">Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Variational Principles in Mathematical Physics, Geometry, & Economics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 368 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 136</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rădulescu, Vicenţiu D.</subfield><subfield code="d">1958-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Varga, Csaba Gyorgy</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521117821</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511760631</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511760631 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:31Z |
institution | BVB |
isbn | 9780511760631 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 368 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Kristály, Alexandru Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga Variational Principles in Mathematical Physics, Geometry, & Economics Cambridge Cambridge University Press 2010 1 Online-Ressource (xv, 368 Seiten) txt c cr Encyclopedia of mathematics and its applications volume 136 This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis. Rădulescu, Vicenţiu D. 1958- Varga, Csaba Gyorgy Erscheint auch als Druck-Ausgabe 9780521117821 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511760631 Volltext |
spellingShingle | Kristály, Alexandru Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_alt | Variational Principles in Mathematical Physics, Geometry, & Economics |
title_auth | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_exact_search | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems |
title_full | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_fullStr | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_full_unstemmed | Variational principles in mathematical physics, geometry, and economics qualitative analysis of nonlinear equations and unilateral problems Alexandru Kristály, Vicenţiu Rădulescu, Csaba Gyorgy Varga |
title_short | Variational principles in mathematical physics, geometry, and economics |
title_sort | variational principles in mathematical physics geometry and economics qualitative analysis of nonlinear equations and unilateral problems |
title_sub | qualitative analysis of nonlinear equations and unilateral problems |
url | https://doi.org/10.1017/CBO9780511760631 |
work_keys_str_mv | AT kristalyalexandru variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT radulescuvicentiud variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT vargacsabagyorgy variationalprinciplesinmathematicalphysicsgeometryandeconomicsqualitativeanalysisofnonlinearequationsandunilateralproblems AT kristalyalexandru variationalprinciplesinmathematicalphysicsgeometryeconomics AT radulescuvicentiud variationalprinciplesinmathematicalphysicsgeometryeconomics AT vargacsabagyorgy variationalprinciplesinmathematicalphysicsgeometryeconomics |