Mathematical aspects of quantum field theory
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | Cambridge studies in advanced mathematics
127 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511760532 | ||
003 | UkCbUP | ||
005 | 20151005020624.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 141103s2010||||enk o ||1 0|eng|d | ||
020 | |a 9780511760532 | ||
100 | 1 | |a Faria, Edson de | |
245 | 1 | 0 | |a Mathematical aspects of quantum field theory |c Edson de Faria, Welington de Melo |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 Online-Ressource (xiii, 298 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 127 | |
520 | |a Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations. | ||
700 | 1 | |a Melo, Welington de | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521115773 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511760532 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511760532 |
---|---|
_version_ | 1818779682450964481 |
adam_text | |
any_adam_object | |
author | Faria, Edson de |
author2 | Melo, Welington de |
author2_role | |
author2_variant | w d m wd wdm |
author_facet | Faria, Edson de Melo, Welington de |
author_role | |
author_sort | Faria, Edson de |
author_variant | e d f ed edf |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511760532 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01715nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511760532</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020624.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">141103s2010||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511760532</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faria, Edson de</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical aspects of quantum field theory</subfield><subfield code="c">Edson de Faria, Welington de Melo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 298 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">127</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melo, Welington de</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521115773</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511760532</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511760532 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:30Z |
institution | BVB |
isbn | 9780511760532 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiii, 298 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Faria, Edson de Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo Cambridge Cambridge University Press 2010 1 Online-Ressource (xiii, 298 Seiten) txt c cr Cambridge studies in advanced mathematics 127 Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations. Melo, Welington de Erscheint auch als Druck-Ausgabe 9780521115773 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511760532 Volltext |
spellingShingle | Faria, Edson de Mathematical aspects of quantum field theory |
title | Mathematical aspects of quantum field theory |
title_auth | Mathematical aspects of quantum field theory |
title_exact_search | Mathematical aspects of quantum field theory |
title_full | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_fullStr | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_full_unstemmed | Mathematical aspects of quantum field theory Edson de Faria, Welington de Melo |
title_short | Mathematical aspects of quantum field theory |
title_sort | mathematical aspects of quantum field theory |
url | https://doi.org/10.1017/CBO9780511760532 |
work_keys_str_mv | AT fariaedsonde mathematicalaspectsofquantumfieldtheory AT melowelingtonde mathematicalaspectsofquantumfieldtheory |