Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation
This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theor...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511755620 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 100422s2006||||enk o ||1 0|eng|d | ||
020 | |a 9780511755620 | ||
100 | 1 | |a Sachs, I. | |
245 | 1 | 0 | |a Elements of statistical mechanics |b with an introduction to quantum field theory and numerical simulation |c Ivo Sachs, Siddartha Sen, James Sexton |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 Online-Ressource (xii, 334 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics. | ||
700 | 1 | |a Sen, Siddhartha | |
700 | 1 | |a Sexton, James | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521143646 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521841986 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511755620 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511755620 |
---|---|
_version_ | 1818779684209426432 |
adam_text | |
any_adam_object | |
author | Sachs, I. |
author2 | Sen, Siddhartha Sexton, James |
author2_role | |
author2_variant | s s ss j s js |
author_facet | Sachs, I. Sen, Siddhartha Sexton, James |
author_role | |
author_sort | Sachs, I. |
author_variant | i s is |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511755620 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01834nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511755620</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">100422s2006||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755620</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sachs, I.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of statistical mechanics</subfield><subfield code="b">with an introduction to quantum field theory and numerical simulation</subfield><subfield code="c">Ivo Sachs, Siddartha Sen, James Sexton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 334 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sen, Siddhartha</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sexton, James</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521143646</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521841986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511755620</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511755620 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:32Z |
institution | BVB |
isbn | 9780511755620 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 334 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Sachs, I. Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation Ivo Sachs, Siddartha Sen, James Sexton Cambridge Cambridge University Press 2006 1 Online-Ressource (xii, 334 Seiten) txt c cr This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics. Sen, Siddhartha Sexton, James Erscheint auch als Druck-Ausgabe 9780521143646 Erscheint auch als Druck-Ausgabe 9780521841986 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511755620 Volltext |
spellingShingle | Sachs, I. Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation |
title | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation |
title_auth | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation |
title_exact_search | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation |
title_full | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation Ivo Sachs, Siddartha Sen, James Sexton |
title_fullStr | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation Ivo Sachs, Siddartha Sen, James Sexton |
title_full_unstemmed | Elements of statistical mechanics with an introduction to quantum field theory and numerical simulation Ivo Sachs, Siddartha Sen, James Sexton |
title_short | Elements of statistical mechanics |
title_sort | elements of statistical mechanics with an introduction to quantum field theory and numerical simulation |
title_sub | with an introduction to quantum field theory and numerical simulation |
url | https://doi.org/10.1017/CBO9780511755620 |
work_keys_str_mv | AT sachsi elementsofstatisticalmechanicswithanintroductiontoquantumfieldtheoryandnumericalsimulation AT sensiddhartha elementsofstatisticalmechanicswithanintroductiontoquantumfieldtheoryandnumericalsimulation AT sextonjames elementsofstatisticalmechanicswithanintroductiontoquantumfieldtheoryandnumericalsimulation |